MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpt2cl Unicode version

Theorem elmpt2cl 5913
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpt2cl.f  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elmpt2cl  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Distinct variable groups:    x, A, y    x, B, y
Allowed substitution hints:    C( x, y)    S( x, y)    T( x, y)    F( x, y)    X( x, y)

Proof of Theorem elmpt2cl
StepHypRef Expression
1 elmpt2cl.f . . . . . 6  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpt2 5715 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2273 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43dmeqi 4787 . . . 4  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 dmoprabss 5781 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  C_  ( A  X.  B
)
64, 5eqsstri 3129 . . 3  |-  dom  F  C_  ( A  X.  B
)
7 elfvdm 5407 . . . 4  |-  ( X  e.  ( F `  <. S ,  T >. )  ->  <. S ,  T >.  e.  dom  F )
8 df-ov 5713 . . . 4  |-  ( S F T )  =  ( F `  <. S ,  T >. )
97, 8eleq2s 2345 . . 3  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  dom  F
)
106, 9sseldi 3101 . 2  |-  ( X  e.  ( S F T )  ->  <. S ,  T >.  e.  ( A  X.  B ) )
11 opelxp 4626 . 2  |-  ( <. S ,  T >.  e.  ( A  X.  B
)  <->  ( S  e.  A  /\  T  e.  B ) )
1210, 11sylib 190 1  |-  ( X  e.  ( S F T )  ->  ( S  e.  A  /\  T  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   <.cop 3547    X. cxp 4578   dom cdm 4580   ` cfv 4592  (class class class)co 5710   {copab2 5711    e. cmpt2 5712
This theorem is referenced by:  elmpt2cl1  5914  elmpt2cl2  5915  elovmpt2  5916  ixxssixx  10548  funcrcl  13581  natrcl  13668  ismhm  14252  isghm  14518  isga  14580  isslw  14754  isrhm  15336  islmhm  15619  iscn2  16800  elflim2  17491  isfcls  17536  isnmhm  18087  limcrcl  19056  iscvm  22961  iseupa  23052
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715
  Copyright terms: Public domain W3C validator