Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsb1 Unicode version

Theorem drsb1 1886
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1829 . . . . 5
21a4s 1700 . . . 4
32imbi1d 310 . . 3
42anbi1d 688 . . . 4
54drex1 1859 . . 3
63, 5anbi12d 694 . 2
7 df-sb 1883 . 2
8 df-sb 1883 . 2
96, 7, 83bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360  wal 1532  wex 1537  wsb 1882 This theorem is referenced by:  sbequi  1951  nfsb4t  1972  sbco3  1982  sbcom  1983  sb9i  1988  iotaeq  6151 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540  df-sb 1883
 Copyright terms: Public domain W3C validator