Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex1 Unicode version

Theorem drex1 1859
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
drex1

Proof of Theorem drex1
StepHypRef Expression
1 dral1.1 . . . . 5
21notbid 287 . . . 4
32dral1 1855 . . 3
43notbid 287 . 2
5 df-ex 1538 . 2
6 df-ex 1538 . 2
74, 5, 63bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178  wal 1532  wex 1537 This theorem is referenced by:  exdistrf  1863  drsb1  1886  eujustALT  2117  copsexg  4145  dfid3  4203  dropab1  26817  dropab2  26818  e2ebind  27022  e2ebindVD  27378  e2ebindALT  27396 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator