Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Unicode version

Theorem dral1 1855
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
dral1

Proof of Theorem dral1
StepHypRef Expression
1 hbae 1840 . . . 4
2 dral1.1 . . . . 5
32biimpd 200 . . . 4
41, 3alimdh 1551 . . 3
5 ax10o 1834 . . 3
64, 5syld 42 . 2
7 hbae 1840 . . . 4
82biimprd 216 . . . 4
97, 8alimdh 1551 . . 3
10 ax10o 1834 . . . 4
1110alequcoms 1681 . . 3
129, 11syld 42 . 2
136, 12impbid 185 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178  wal 1532 This theorem is referenced by:  drex1  1859  drnf1  1861  equveli  1880  sb9i  1988  a16g  2000  ralcom2  2666  axpownd  8103  ax12-2  27792  ax12-4  27795 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator