Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif Unicode version

Theorem difdif 3219
 Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif

Proof of Theorem difdif
StepHypRef Expression
1 pm4.45im 547 . . 3
2 iman 415 . . . . 5
3 eldif 3088 . . . . 5
42, 3xchbinxr 304 . . . 4
54anbi2i 678 . . 3
61, 5bitr2i 243 . 2
76difeqri 3213 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wa 360   wceq 1619   wcel 1621   cdif 3075 This theorem is referenced by:  dif0  3430  undifabs  3437 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-dif 3081
 Copyright terms: Public domain W3C validator