Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftp2 Unicode version

Theorem dftp2 3583
 Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
dftp2
Distinct variable groups:   ,   ,   ,

Proof of Theorem dftp2
StepHypRef Expression
1 vex 2730 . . 3
21eltp 3582 . 2
32abbi2i 2360 1
 Colors of variables: wff set class Syntax hints:   w3o 938   wceq 1619  cab 2239  ctp 3546 This theorem is referenced by:  tprot  3626  tpid3g  3645  en3lplem2  7301  tpid3gVD  27308  en3lplem2VD  27310 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-sn 3550  df-pr 3551  df-tp 3552
 Copyright terms: Public domain W3C validator