MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2 Unicode version

Theorem dfiun2 3835
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiun2  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiun2
StepHypRef Expression
1 dfiun2g 3833 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 12 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2574 1  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   {cab 2239   E.wrex 2510   _Vcvv 2727   U.cuni 3727   U_ciun 3803
This theorem is referenced by:  funcnvuni  5174  fun11iun  5350  fniunfv  5625  tfrlem8  6286  rdglim2a  6332  rankuni  7419  cardiun  7499  kmlem11  7670  cfslb2n  7778  enfin2i  7831  pwcfsdom  8085  rankcf  8279  tskuni  8285  discmp  16957  cmpsublem  16958  cmpsub  16959
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-rex 2514  df-v 2729  df-uni 3728  df-iun 3805
  Copyright terms: Public domain W3C validator