Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Unicode version

Definition df-ec 6548
 Description: Define the -coset of . Exercise 35 of [Enderton] p. 61. This is called the equivalence class of modulo when is an equivalence relation (i.e. when ; see dfer2 6547). In this case, is a representative (member) of the equivalence class , which contains all sets that are equivalent to . Definition of [Enderton] p. 57 uses the notation (subscript) , although we simply follow the brackets by since we don't have subscripted expressions. For an alternate definition, see dfec2 6549. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3
2 cR . . 3
31, 2cec 6544 . 2
41csn 3544 . . 3
52, 4cima 4583 . 2
63, 5wceq 1619 1
 Colors of variables: wff set class This definition is referenced by:  dfec2  6549  ecexg  6550  ecexr  6551  eceq1  6582  eceq2  6583  elecg  6584  ecss  6587  ecidsn  6594  uniqs  6605  ecqs  6609  ecinxp  6620
 Copyright terms: Public domain W3C validator