MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem3 Unicode version

Theorem dchrisumlem3 20472
Description: Lemma for dchrisum 20473. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisum.2  |-  ( n  =  x  ->  A  =  B )
dchrisum.3  |-  ( ph  ->  M  e.  NN )
dchrisum.4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
dchrisum.5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
dchrisum.6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
dchrisum.7  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
dchrisum.9  |-  ( ph  ->  R  e.  RR )
dchrisum.10  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
) )  <_  R
)
Assertion
Ref Expression
dchrisumlem3  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Distinct variable groups:    u, n, x, c, t    .1. , c    t, n,  .1. , x    u, c, F, n, t, x    A, c, t, x    N, c, n, t, u, x    ph, c, n, t, u, x    R, c, n, u, x    B, c, n    n, Z, x    D, c, n, t, x    L, c, n, t, u, x    M, c, n, u, x    X, c, n, t, u, x
Allowed substitution hints:    A( u, n)    B( x, u, t)    D( u)    R( t)    .1. ( u)    G( x, u, t, n, c)    M( t)    Z( u, t, c)

Proof of Theorem dchrisumlem3
StepHypRef Expression
1 nnuz 10142 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 9932 . . . . . . 7  |-  1  e.  ZZ
32a1i 12 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
4 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
5 rpvmasum.g . . . . . . . . . 10  |-  G  =  (DChr `  N )
6 rpvmasum.z . . . . . . . . . 10  |-  Z  =  (ℤ/n `  N )
7 rpvmasum.d . . . . . . . . . 10  |-  D  =  ( Base `  G
)
8 rpvmasum.l . . . . . . . . . 10  |-  L  =  ( ZRHom `  Z
)
9 dchrisum.b . . . . . . . . . . 11  |-  ( ph  ->  X  e.  D )
109adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  X  e.  D )
114nnzd 9995 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
125, 6, 7, 8, 10, 11dchrzrhcl 20316 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( X `
 ( L `  i ) )  e.  CC )
13 dchrisum.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
1413ralrimiva 2588 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  RR+  A  e.  RR )
15 nnrp 10242 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  i  e.  RR+ )
16 nfcsb1v 3041 . . . . . . . . . . . . . 14  |-  F/_ n [_ i  /  n ]_ A
1716nfel1 2395 . . . . . . . . . . . . 13  |-  F/ n [_ i  /  n ]_ A  e.  RR
18 csbeq1a 3017 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
1918eleq1d 2319 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  ( A  e.  RR  <->  [_ i  /  n ]_ A  e.  RR ) )
2017, 19rcla4 2815 . . . . . . . . . . . 12  |-  ( i  e.  RR+  ->  ( A. n  e.  RR+  A  e.  RR  ->  [_ i  /  n ]_ A  e.  RR ) )
2120impcom 421 . . . . . . . . . . 11  |-  ( ( A. n  e.  RR+  A  e.  RR  /\  i  e.  RR+ )  ->  [_ i  /  n ]_ A  e.  RR )
2214, 15, 21syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN )  ->  [_ i  /  n ]_ A  e.  RR )
2322recnd 8741 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  [_ i  /  n ]_ A  e.  CC )
2412, 23mulcld 8735 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( X `  ( L `
 i ) )  x.  [_ i  /  n ]_ A )  e.  CC )
25 nfcv 2385 . . . . . . . . 9  |-  F/_ n
i
26 nfcv 2385 . . . . . . . . . 10  |-  F/_ n
( X `  ( L `  i )
)
27 nfcv 2385 . . . . . . . . . 10  |-  F/_ n  x.
2826, 27, 16nfov 5733 . . . . . . . . 9  |-  F/_ n
( ( X `  ( L `  i ) )  x.  [_ i  /  n ]_ A )
29 fveq2 5377 . . . . . . . . . . 11  |-  ( n  =  i  ->  ( L `  n )  =  ( L `  i ) )
3029fveq2d 5381 . . . . . . . . . 10  |-  ( n  =  i  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  i )
) )
3130, 18oveq12d 5728 . . . . . . . . 9  |-  ( n  =  i  ->  (
( X `  ( L `  n )
)  x.  A )  =  ( ( X `
 ( L `  i ) )  x. 
[_ i  /  n ]_ A ) )
32 dchrisum.7 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
3325, 28, 31, 32fvmptf 5468 . . . . . . . 8  |-  ( ( i  e.  NN  /\  ( ( X `  ( L `  i ) )  x.  [_ i  /  n ]_ A )  e.  CC )  -> 
( F `  i
)  =  ( ( X `  ( L `
 i ) )  x.  [_ i  /  n ]_ A ) )
344, 24, 33syl2anc 645 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  =  ( ( X `  ( L `  i ) )  x.  [_ i  /  n ]_ A ) )
3534, 24eqeltrd 2327 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  CC )
361, 3, 35serf 10952 . . . . 5  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
37 ffvelrn 5515 . . . . 5  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  k  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  k
)  e.  CC )
3836, 37sylan 459 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  k
)  e.  CC )
3913recnd 8741 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  CC )
4039ralrimiva 2588 . . . . . . . 8  |-  ( ph  ->  A. n  e.  RR+  A  e.  CC )
4140adantr 453 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. n  e.  RR+  A  e.  CC )
42 id 21 . . . . . . . 8  |-  ( e  e.  RR+  ->  e  e.  RR+ )
43 2re 9695 . . . . . . . . . 10  |-  2  e.  RR
44 dchrisum.9 . . . . . . . . . 10  |-  ( ph  ->  R  e.  RR )
45 remulcl 8702 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  R  e.  RR )  ->  ( 2  x.  R
)  e.  RR )
4643, 44, 45sylancr 647 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  R
)  e.  RR )
47 rpvmasum.a . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
48 lbfzo0 10781 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
4947, 48sylibr 205 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ( 0..^ N ) )
50 dchrisum.10 . . . . . . . . . . 11  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
) )  <_  R
)
51 oveq2 5718 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  0  ->  (
0..^ u )  =  ( 0..^ 0 ) )
52 fzo0 10771 . . . . . . . . . . . . . . . . . 18  |-  ( 0..^ 0 )  =  (/)
5351, 52syl6eq 2301 . . . . . . . . . . . . . . . . 17  |-  ( u  =  0  ->  (
0..^ u )  =  (/) )
5453sumeq1d 12051 . . . . . . . . . . . . . . . 16  |-  ( u  =  0  ->  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)  =  sum_ n  e.  (/)  ( X `  ( L `  n ) ) )
55 sum0 12071 . . . . . . . . . . . . . . . 16  |-  sum_ n  e.  (/)  ( X `  ( L `  n ) )  =  0
5654, 55syl6eq 2301 . . . . . . . . . . . . . . 15  |-  ( u  =  0  ->  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)  =  0 )
5756fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( u  =  0  ->  ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `
 n ) ) )  =  ( abs `  0 ) )
58 abs0 11647 . . . . . . . . . . . . . 14  |-  ( abs `  0 )  =  0
5957, 58syl6eq 2301 . . . . . . . . . . . . 13  |-  ( u  =  0  ->  ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `
 n ) ) )  =  0 )
6059breq1d 3930 . . . . . . . . . . . 12  |-  ( u  =  0  ->  (
( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R  <->  0  <_  R ) )
6160rcla4v 2817 . . . . . . . . . . 11  |-  ( 0  e.  ( 0..^ N )  ->  ( A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `
 n ) ) )  <_  R  ->  0  <_  R ) )
6249, 50, 61sylc 58 . . . . . . . . . 10  |-  ( ph  ->  0  <_  R )
63 2nn0 9861 . . . . . . . . . . . 12  |-  2  e.  NN0
6463nn0ge0i 9872 . . . . . . . . . . 11  |-  0  <_  2
65 mulge0 9171 . . . . . . . . . . 11  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( R  e.  RR  /\  0  <_  R ) )  -> 
0  <_  ( 2  x.  R ) )
6643, 64, 65mpanl12 666 . . . . . . . . . 10  |-  ( ( R  e.  RR  /\  0  <_  R )  -> 
0  <_  ( 2  x.  R ) )
6744, 62, 66syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( 2  x.  R ) )
6846, 67ge0p1rpd 10295 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  R )  +  1 )  e.  RR+ )
69 rpdivcl 10255 . . . . . . . 8  |-  ( ( e  e.  RR+  /\  (
( 2  x.  R
)  +  1 )  e.  RR+ )  ->  (
e  /  ( ( 2  x.  R )  +  1 ) )  e.  RR+ )
7042, 68, 69syl2anr 466 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  ( ( 2  x.  R )  +  1 ) )  e.  RR+ )
71 dchrisum.6 . . . . . . . 8  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
7271adantr 453 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
7341, 70, 72rlimi 11864 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. m  e.  RR  A. n  e.  RR+  ( m  <_  n  ->  ( abs `  ( A  -  0 ) )  <  ( e  /  ( ( 2  x.  R )  +  1 ) ) ) )
74 simpr 449 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  m  e.  RR )
75 dchrisum.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  NN )
7675nnred 9641 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  RR )
7776adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  M  e.  RR )
78 ifcl 3506 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  M  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  RR )
7974, 77, 78syl2anc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  RR )
80 0re 8718 . . . . . . . . . . . . 13  |-  0  e.  RR
8180a1i 12 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  0  e.  RR )
8275nngt0d 9669 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  M )
8382adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  0  < 
M )
84 max1 10392 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  m  e.  RR )  ->  M  <_  if ( M  <_  m ,  m ,  M ) )
8576, 84sylan 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  M  <_  if ( M  <_  m ,  m ,  M ) )
8681, 77, 79, 83, 85ltletrd 8856 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  RR )  ->  0  < 
if ( M  <_  m ,  m ,  M ) )
8779, 86elrpd 10267 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  RR+ )
8887adantlr 698 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  RR+ )
89 nfv 1629 . . . . . . . . . . 11  |-  F/ n  m  <_  if ( M  <_  m ,  m ,  M )
90 nfcv 2385 . . . . . . . . . . . . 13  |-  F/_ n abs
91 nfcsb1v 3041 . . . . . . . . . . . . . 14  |-  F/_ n [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
92 nfcv 2385 . . . . . . . . . . . . . 14  |-  F/_ n  -
93 nfcv 2385 . . . . . . . . . . . . . 14  |-  F/_ n
0
9491, 92, 93nfov 5733 . . . . . . . . . . . . 13  |-  F/_ n
( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
)
9590, 94nffv 5384 . . . . . . . . . . . 12  |-  F/_ n
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )
96 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ n  <
97 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ n
( e  /  (
( 2  x.  R
)  +  1 ) )
9895, 96, 97nfbr 3964 . . . . . . . . . . 11  |-  F/ n
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) )
9989, 98nfim 1735 . . . . . . . . . 10  |-  F/ n
( m  <_  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) ) )
100 breq2 3924 . . . . . . . . . . 11  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  (
m  <_  n  <->  m  <_  if ( M  <_  m ,  m ,  M ) ) )
101 csbeq1a 3017 . . . . . . . . . . . . . 14  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  A  =  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )
102101oveq1d 5725 . . . . . . . . . . . . 13  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  ( A  -  0 )  =  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0 ) )
103102fveq2d 5381 . . . . . . . . . . . 12  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( A  - 
0 ) )  =  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) ) )
104103breq1d 3930 . . . . . . . . . . 11  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  (
( abs `  ( A  -  0 ) )  <  ( e  /  ( ( 2  x.  R )  +  1 ) )  <->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  - 
0 ) )  < 
( e  /  (
( 2  x.  R
)  +  1 ) ) ) )
105100, 104imbi12d 313 . . . . . . . . . 10  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  (
( m  <_  n  ->  ( abs `  ( A  -  0 ) )  <  ( e  /  ( ( 2  x.  R )  +  1 ) ) )  <-> 
( m  <_  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) ) ) ) )
10699, 105rcla4 2815 . . . . . . . . 9  |-  ( if ( M  <_  m ,  m ,  M )  e.  RR+  ->  ( A. n  e.  RR+  ( m  <_  n  ->  ( abs `  ( A  - 
0 ) )  < 
( e  /  (
( 2  x.  R
)  +  1 ) ) )  ->  (
m  <_  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0 ) )  <  ( e  / 
( ( 2  x.  R )  +  1 ) ) ) ) )
10788, 106syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( A. n  e.  RR+  (
m  <_  n  ->  ( abs `  ( A  -  0 ) )  <  ( e  / 
( ( 2  x.  R )  +  1 ) ) )  -> 
( m  <_  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) ) ) ) )
10876ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  M  e.  RR )
109 max2 10394 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  m  e.  RR )  ->  m  <_  if ( M  <_  m ,  m ,  M ) )
110108, 109sylancom 651 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  m  <_  if ( M  <_  m ,  m ,  M ) )
11114ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  A. n  e.  RR+  A  e.  RR )
11291nfel1 2395 . . . . . . . . . . . . . . . . . . 19  |-  F/ n [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  RR
113101eleq1d 2319 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  if ( M  <_  m ,  m ,  M )  ->  ( A  e.  RR  <->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  RR ) )
114112, 113rcla4 2815 . . . . . . . . . . . . . . . . . 18  |-  ( if ( M  <_  m ,  m ,  M )  e.  RR+  ->  ( A. n  e.  RR+  A  e.  RR  ->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  RR ) )
11588, 111, 114sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  RR )
116115recnd 8741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  CC )
117116subid1d 9026 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
)  =  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)
118117fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0 ) )  =  ( abs `  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
) )
11979adantlr 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  RR )
120108, 84sylancom 651 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  M  <_  if ( M  <_  m ,  m ,  M ) )
121 elicopnf 10617 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  RR  ->  ( if ( M  <_  m ,  m ,  M )  e.  ( M [,)  +oo )  <->  ( if ( M  <_  m ,  m ,  M )  e.  RR  /\  M  <_  if ( M  <_  m ,  m ,  M ) ) ) )
122108, 121syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( if ( M  <_  m ,  m ,  M )  e.  ( M [,)  +oo )  <->  ( if ( M  <_  m ,  m ,  M )  e.  RR  /\  M  <_  if ( M  <_  m ,  m ,  M ) ) ) )
123119, 120, 122mpbir2and 893 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  if ( M  <_  m ,  m ,  M )  e.  ( M [,)  +oo ) )
12447ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  N  e.  NN )
125 rpvmasum.1 . . . . . . . . . . . . . . . . . 18  |-  .1.  =  ( 0g `  G )
1269ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  X  e.  D )
127 dchrisum.n1 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  =/=  .1.  )
128127ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  X  =/=  .1.  )
129 dchrisum.2 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  x  ->  A  =  B )
13075ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  M  e.  NN )
131111r19.21bi 2603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  n  e.  RR+ )  ->  A  e.  RR )
132 simpll 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ph )
133 dchrisum.5 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
134132, 133syl3an1 1220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
13571ad2antrr 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
n  e.  RR+  |->  A )  ~~> r  0 )
1366, 8, 124, 5, 7, 125, 126, 128, 129, 130, 131, 134, 135, 32dchrisumlema 20469 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( if ( M  <_  m ,  m ,  M )  e.  RR+  ->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  e.  RR )  /\  ( if ( M  <_  m ,  m ,  M )  e.  ( M [,)  +oo )  ->  0  <_  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
) ) )
137136simprd 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( if ( M  <_  m ,  m ,  M )  e.  ( M [,)  +oo )  ->  0  <_  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A ) )
138123, 137mpd 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  0  <_  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )
139115, 138absidd 11782 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( abs `  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  =  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )
140118, 139eqtrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0 ) )  =  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )
141140breq1d 3930 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) )  <->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  <  ( e  /  ( ( 2  x.  R )  +  1 ) ) ) )
142 rpre 10239 . . . . . . . . . . . . . 14  |-  ( e  e.  RR+  ->  e  e.  RR )
143142ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  e  e.  RR )
14468ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( 2  x.  R
)  +  1 )  e.  RR+ )
145115, 143, 144ltmuldiv2d 10313 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e  <->  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  < 
( e  /  (
( 2  x.  R
)  +  1 ) ) ) )
146141, 145bitr4d 249 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) )  <-> 
( ( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e )
)
14746ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
2  x.  R )  e.  RR )
148144rpred 10269 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( 2  x.  R
)  +  1 )  e.  RR )
149147lep1d 9568 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
2  x.  R )  <_  ( ( 2  x.  R )  +  1 ) )
150147, 148, 115, 138, 149lemul1ad 9576 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <_  ( (
( 2  x.  R
)  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A ) )
151147, 115remulcld 8743 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR )
152148, 115remulcld 8743 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR )
153 lelttr 8792 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR  /\  ( ( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR  /\  e  e.  RR )  ->  ( ( ( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <_  ( ( ( 2  x.  R )  +  1 )  x. 
[_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  /\  (
( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e )  ->  ( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e )
)
154151, 152, 143, 153syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( ( 2  x.  R )  x. 
[_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <_  (
( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  /\  ( (
( 2  x.  R
)  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <  e )  -> 
( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e )
)
155150, 154mpand 659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( ( 2  x.  R )  +  1 )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e  ->  ( ( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e )
)
156146, 155sylbid 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) )  ->  ( ( 2  x.  R )  x. 
[_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <  e
) )
157 1re 8717 . . . . . . . . . . . . . . 15  |-  1  e.  RR
158157a1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  RR )  ->  1  e.  RR )
15975adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  RR )  ->  M  e.  NN )
160159nnge1d 9668 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  RR )  ->  1  <_  M )
161158, 77, 79, 160, 85letrd 8853 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  RR )  ->  1  <_  if ( M  <_  m ,  m ,  M ) )
162 flge1nn 10827 . . . . . . . . . . . . 13  |-  ( ( if ( M  <_  m ,  m ,  M )  e.  RR  /\  1  <_  if ( M  <_  m ,  m ,  M ) )  -> 
( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN )
16379, 161, 162syl2anc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR )  ->  ( |_
`  if ( M  <_  m ,  m ,  M ) )  e.  NN )
164163adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN )
16547ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  N  e.  NN )
1669ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  X  e.  D )
167127ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  X  =/=  .1.  )
16875ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  M  e.  NN )
16913adantlr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  RR )  /\  n  e.  RR+ )  ->  A  e.  RR )
170169adantlr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  /\  n  e.  RR+ )  ->  A  e.  RR )
1711333adant1r 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  RR )  /\  (
n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
1721713adant1r 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
17371ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
17444ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  R  e.  RR )
17550ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R
)
17687adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  if ( M  <_  m ,  m ,  M )  e.  RR+ )
17785adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  M  <_  if ( M  <_  m ,  m ,  M ) )
17879adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  if ( M  <_  m ,  m ,  M )  e.  RR )
179 fllep1 10811 . . . . . . . . . . . . . . . 16  |-  ( if ( M  <_  m ,  m ,  M )  e.  RR  ->  if ( M  <_  m ,  m ,  M )  <_  ( ( |_
`  if ( M  <_  m ,  m ,  M ) )  +  1 ) )
180178, 179syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  if ( M  <_  m ,  m ,  M )  <_  (
( |_ `  if ( M  <_  m ,  m ,  M ) )  +  1 ) )
181163adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  ( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN )
182 simpr 449 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )
1836, 8, 165, 5, 7, 125, 166, 167, 129, 168, 170, 172, 173, 32, 174, 175, 176, 177, 180, 181, 182dchrisumlem2 20471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <_  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
) )
184183adantllr 702 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  <_  ( ( 2  x.  R )  x. 
[_ if ( M  <_  m ,  m ,  M )  /  n ]_ A ) )
18536ad3antrrr 713 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  ->  seq  1 (  +  ,  F ) : NN --> CC )
1861uztrn2 10124 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN  /\  k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) )  -> 
k  e.  NN )
187164, 186sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
k  e.  NN )
188185, 187, 37syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
(  seq  1 (  +  ,  F ) `
 k )  e.  CC )
189164adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN )
190 ffvelrn 5515 . . . . . . . . . . . . . . . . 17  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) )  e.  CC )
191185, 189, 190syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
(  seq  1 (  +  ,  F ) `
 ( |_ `  if ( M  <_  m ,  m ,  M ) ) )  e.  CC )
192188, 191subcld 9037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  e.  CC )
193192abscld 11795 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  e.  RR )
194151adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR )
195143adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
e  e.  RR )
196 lelttr 8792 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  e.  RR  /\  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  e.  RR  /\  e  e.  RR )  ->  ( ( ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <_  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  /\  ( (
2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <  e )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  <  e ) )
197193, 194, 195, 196syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( ( ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <_  (
( 2  x.  R
)  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  /\  ( (
2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <  e )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  <  e ) )
198184, 197mpand 659 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  /\  k  e.  ( ZZ>=
`  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )  -> 
( ( ( 2  x.  R )  x. 
[_ if ( M  <_  m ,  m ,  M )  /  n ]_ A )  <  e  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  <  e ) )
199198ralrimdva 2595 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e  ->  A. k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <  e
) )
200 fveq2 5377 . . . . . . . . . . . . 13  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  ( ZZ>= `  j )  =  (
ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )
201 fveq2 5377 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  (  seq  1 (  +  ,  F ) `  j
)  =  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) )
202201oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  ( (  seq  1 (  +  ,  F ) `  k
)  -  (  seq  1 (  +  ,  F ) `  j
) )  =  ( (  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )
203202fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  =  ( abs `  ( (  seq  1 (  +  ,  F ) `  k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) ) )
204203breq1d 3930 . . . . . . . . . . . . 13  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  ( ( abs `  ( (  seq  1 (  +  ,  F ) `  k
)  -  (  seq  1 (  +  ,  F ) `  j
) ) )  < 
e  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ) )  <  e ) )
205200, 204raleqbidv 2699 . . . . . . . . . . . 12  |-  ( j  =  ( |_ `  if ( M  <_  m ,  m ,  M ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e  <->  A. k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <  e
) )
206205rcla4ev 2821 . . . . . . . . . . 11  |-  ( ( ( |_ `  if ( M  <_  m ,  m ,  M ) )  e.  NN  /\  A. k  e.  ( ZZ>= `  ( |_ `  if ( M  <_  m ,  m ,  M )
) ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  ( |_ `  if ( M  <_  m ,  m ,  M ) ) ) ) )  <  e
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  j ) ) )  <  e )
207164, 199, 206ee12an 1359 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( ( 2  x.  R )  x.  [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A
)  <  e  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e
) )
208156, 207syld 42 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e
) )
209110, 208embantd 52 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  (
( m  <_  if ( M  <_  m ,  m ,  M )  ->  ( abs `  ( [_ if ( M  <_  m ,  m ,  M )  /  n ]_ A  -  0
) )  <  (
e  /  ( ( 2  x.  R )  +  1 ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  j ) ) )  <  e ) )
210107, 209syld 42 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  m  e.  RR )  ->  ( A. n  e.  RR+  (
m  <_  n  ->  ( abs `  ( A  -  0 ) )  <  ( e  / 
( ( 2  x.  R )  +  1 ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e
) )
211210rexlimdva 2629 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. m  e.  RR  A. n  e.  RR+  ( m  <_  n  ->  ( abs `  ( A  -  0 ) )  <  ( e  /  ( ( 2  x.  R )  +  1 ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e
) )
21273, 211mpd 16 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
(  seq  1 (  +  ,  F ) `
 k )  -  (  seq  1 (  +  ,  F ) `  j ) ) )  <  e )
213212ralrimiva 2588 . . . 4  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( (  seq  1
(  +  ,  F
) `  k )  -  (  seq  1
(  +  ,  F
) `  j )
) )  <  e
)
214 seqex 10926 . . . . 5  |-  seq  1
(  +  ,  F
)  e.  _V
215214a1i 12 . . . 4  |-  ( ph  ->  seq  1 (  +  ,  F )  e. 
_V )
2161, 38, 213, 215caucvg 12028 . . 3  |-  ( ph  ->  seq  1 (  +  ,  F )  e. 
dom 
~~>  )
217214eldm 4783 . . 3  |-  (  seq  1 (  +  ,  F )  e.  dom  ~~>  <->  E. t  seq  1 (  +  ,  F )  ~~>  t )
218216, 217sylib 190 . 2  |-  ( ph  ->  E. t  seq  1
(  +  ,  F
)  ~~>  t )
219 simpr 449 . . . . 5  |-  ( (
ph  /\  seq  1
(  +  ,  F
)  ~~>  t )  ->  seq  1 (  +  ,  F )  ~~>  t )
220 elrege0 10624 . . . . . . . 8  |-  ( ( 2  x.  R )  e.  ( 0 [,) 
+oo )  <->  ( (
2  x.  R )  e.  RR  /\  0  <_  ( 2  x.  R
) ) )
22146, 67, 220sylanbrc 648 . . . . . . 7  |-  ( ph  ->  ( 2  x.  R
)  e.  ( 0 [,)  +oo ) )
222221adantr 453 . . . . . 6  |-  ( (
ph  /\  seq  1
(  +  ,  F
)  ~~>  t )  -> 
( 2  x.  R
)  e.  ( 0 [,)  +oo ) )
223 eqid 2253 . . . . . . . 8  |-  ( ZZ>= `  ( |_ `  m ) )  =  ( ZZ>= `  ( |_ `  m ) )
224 pnfxr 10334 . . . . . . . . . . . 12  |-  +oo  e.  RR*
225 icossre 10608 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  +oo 
e.  RR* )  ->  ( M [,)  +oo )  C_  RR )
22676, 224, 225sylancl 646 . . . . . . . . . . 11  |-  ( ph  ->  ( M [,)  +oo )  C_  RR )
227226sselda 3103 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  m  e.  RR )
228227adantlr 698 . . . . . . . . 9  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  m  e.  RR )
229228flcld 10808 . . . . . . . 8  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( |_ `  m )  e.  ZZ )
230 simplr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  seq  1
(  +  ,  F
)  ~~>  t )
23136ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  seq  1
(  +  ,  F
) : NN --> CC )
232157a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  1  e.  RR )
23376ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  M  e.  RR )
23475ad2antrr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  M  e.  NN )
235234nnge1d 9668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  1  <_  M )
236 elicopnf 10617 . . . . . . . . . . . . . . . 16  |-  ( M  e.  RR  ->  (
m  e.  ( M [,)  +oo )  <->  ( m  e.  RR  /\  M  <_  m ) ) )
23776, 236syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( m  e.  ( M [,)  +oo )  <->  ( m  e.  RR  /\  M  <_  m ) ) )
238237simplbda 610 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  M  <_  m )
239238adantlr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  M  <_  m )
240232, 233, 228, 235, 239letrd 8853 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  1  <_  m )
241 flge1nn 10827 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  1  <_  m )  -> 
( |_ `  m
)  e.  NN )
242228, 240, 241syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( |_ `  m )  e.  NN )
243 ffvelrn 5515 . . . . . . . . . . 11  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  m )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  e.  CC )
244231, 242, 243syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  e.  CC )
245 nnex 9632 . . . . . . . . . . . 12  |-  NN  e.  _V
246245mptex 5598 . . . . . . . . . . 11  |-  ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) )  e. 
_V
247246a1i 12 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1
(  +  ,  F
) `  k )
) )  e.  _V )
248231adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  seq  1 (  +  ,  F ) : NN --> CC )
2491uztrn2 10124 . . . . . . . . . . . 12  |-  ( ( ( |_ `  m
)  e.  NN  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  i  e.  NN )
250242, 249sylan 459 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  i  e.  NN )
251 ffvelrn 5515 . . . . . . . . . . 11  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  i  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  i
)  e.  CC )
252248, 250, 251syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  (  seq  1
(  +  ,  F
) `  i )  e.  CC )
253 fveq2 5377 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  (  seq  1 (  +  ,  F ) `  k
)  =  (  seq  1 (  +  ,  F ) `  i
) )
254253oveq2d 5726 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) )  =  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )
255 eqid 2253 . . . . . . . . . . . 12  |-  ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) )  =  ( k  e.  NN  |->  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) )
256 ovex 5735 . . . . . . . . . . . 12  |-  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) )  e.  _V
257254, 255, 256fvmpt3i 5457 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) `
 i )  =  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )
258250, 257syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) ) `  i )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )
259223, 229, 230, 244, 247, 252, 258climsubc2 11989 . . . . . . . . 9  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1
(  +  ,  F
) `  k )
) )  ~~>  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  t ) )
260245mptex 5598 . . . . . . . . . 10  |-  ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) )  e.  _V
261260a1i 12 . . . . . . . . 9  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( k  e.  NN  |->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) )  e.  _V )
262 fvex 5391 . . . . . . . . . . . . . 14  |-  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  e.  _V
263262fvconst2 5581 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  (
( NN  X.  {
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) ) } ) `  i )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  m ) ) )
264250, 263syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( NN 
X.  { (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) } ) `  i
)  =  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) )
265264oveq1d 5725 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( ( NN  X.  { (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) } ) `  i )  -  (  seq  1 (  +  ,  F ) `  i
) )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )
266258, 265eqtr4d 2288 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) ) `  i )  =  ( ( ( NN  X.  { (  seq  1
(  +  ,  F
) `  ( |_ `  m ) ) } ) `  i )  -  (  seq  1
(  +  ,  F
) `  i )
) )
267244adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  e.  CC )
268264, 267eqeltrd 2327 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( NN 
X.  { (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) } ) `  i
)  e.  CC )
269268, 252subcld 9037 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( ( NN  X.  { (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) } ) `  i )  -  (  seq  1 (  +  ,  F ) `  i
) )  e.  CC )
270266, 269eqeltrd 2327 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) ) `  i )  e.  CC )
271254fveq2d 5381 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1
(  +  ,  F
) `  k )
) )  =  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i
) ) ) )
272 eqid 2253 . . . . . . . . . . . 12  |-  ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) )  =  ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) )
273 fvex 5391 . . . . . . . . . . . 12  |-  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) )  e.  _V
274271, 272, 273fvmpt3i 5457 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k
) ) ) ) `
 i )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) ) )
275250, 274syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) ) `  i )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) ) )
276258fveq2d 5381 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( abs `  (
( k  e.  NN  |->  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) `
 i ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) ) )
277275, 276eqtr4d 2288 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) ) `  i )  =  ( abs `  (
( k  e.  NN  |->  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) `
 i ) ) )
278223, 259, 261, 229, 270, 277climabs 11954 . . . . . . . 8  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( k  e.  NN  |->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) )  ~~>  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  t ) ) )
27946ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( 2  x.  R )  e.  RR )
28080a1i 12 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  0  e.  RR )
28176adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  M  e.  RR )
28282adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  0  <  M )
283280, 281, 227, 282, 238ltletrd 8856 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  0  <  m )
284227, 283elrpd 10267 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  m  e.  RR+ )
285 nfcsb1v 3041 . . . . . . . . . . . . . . . 16  |-  F/_ n [_ m  /  n ]_ A
286285nfel1 2395 . . . . . . . . . . . . . . 15  |-  F/ n [_ m  /  n ]_ A  e.  RR
287 csbeq1a 3017 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
288287eleq1d 2319 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( A  e.  RR  <->  [_ m  /  n ]_ A  e.  RR ) )
289286, 288rcla4 2815 . . . . . . . . . . . . . 14  |-  ( m  e.  RR+  ->  ( A. n  e.  RR+  A  e.  RR  ->  [_ m  /  n ]_ A  e.  RR ) )
29014, 289mpan9 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  RR+ )  ->  [_ m  /  n ]_ A  e.  RR )
291284, 290syldan 458 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( M [,)  +oo )
)  ->  [_ m  /  n ]_ A  e.  RR )
292291adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  [_ m  /  n ]_ A  e.  RR )
293279, 292remulcld 8743 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( (
2  x.  R )  x.  [_ m  /  n ]_ A )  e.  RR )
294293recnd 8741 . . . . . . . . 9  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( (
2  x.  R )  x.  [_ m  /  n ]_ A )  e.  CC )
2951eqimss2i 3154 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  C_  NN
296295, 245climconst2 11899 . . . . . . . . 9  |-  ( ( ( ( 2  x.  R )  x.  [_ m  /  n ]_ A
)  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  {
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) } )  ~~>  ( ( 2  x.  R )  x.  [_ m  /  n ]_ A ) )
297294, 2, 296sylancl 646 . . . . . . . 8  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( NN  X.  { ( ( 2  x.  R )  x. 
[_ m  /  n ]_ A ) } )  ~~>  ( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) )
298267, 252subcld 9037 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  (  seq  1
(  +  ,  F
) `  i )
)  e.  CC )
299298abscld 11795 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )  e.  RR )
300275, 299eqeltrd 2327 . . . . . . . 8  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) ) `  i )  e.  RR )
301 ovex 5735 . . . . . . . . . . 11  |-  ( ( 2  x.  R )  x.  [_ m  /  n ]_ A )  e. 
_V
302301fvconst2 5581 . . . . . . . . . 10  |-  ( i  e.  NN  ->  (
( NN  X.  {
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) } ) `  i )  =  ( ( 2  x.  R
)  x.  [_ m  /  n ]_ A ) )
303250, 302syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( NN 
X.  { ( ( 2  x.  R )  x.  [_ m  /  n ]_ A ) } ) `  i )  =  ( ( 2  x.  R )  x. 
[_ m  /  n ]_ A ) )
304293adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( 2  x.  R )  x. 
[_ m  /  n ]_ A )  e.  RR )
305303, 304eqeltrd 2327 . . . . . . . 8  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( NN 
X.  { ( ( 2  x.  R )  x.  [_ m  /  n ]_ A ) } ) `  i )  e.  RR )
306 simplll 737 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ph )
307306, 47syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  N  e.  NN )
308306, 9syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  X  e.  D
)
309306, 127syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  X  =/=  .1.  )
310234adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  M  e.  NN )
311306, 13sylan 459 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  /\  n  e.  RR+ )  ->  A  e.  RR )
312306, 133syl3an1 1220 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x
) )  ->  B  <_  A )
313306, 71syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
314306, 44syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  R  e.  RR )
315306, 50syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
) )  <_  R
)
316284adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  m  e.  RR+ )
317316adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  m  e.  RR+ )
318239adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  M  <_  m
)
319228adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  m  e.  RR )
320 reflcl 10806 . . . . . . . . . . . 12  |-  ( m  e.  RR  ->  ( |_ `  m )  e.  RR )
321 peano2re 8865 . . . . . . . . . . . 12  |-  ( ( |_ `  m )  e.  RR  ->  (
( |_ `  m
)  +  1 )  e.  RR )
322319, 320, 3213syl 20 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( |_
`  m )  +  1 )  e.  RR )
323 flltp1 10810 . . . . . . . . . . . 12  |-  ( m  e.  RR  ->  m  <  ( ( |_ `  m )  +  1 ) )
324319, 323syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  m  <  (
( |_ `  m
)  +  1 ) )
325319, 322, 324ltled 8847 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  m  <_  (
( |_ `  m
)  +  1 ) )
326242adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( |_ `  m )  e.  NN )
327 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  i  e.  (
ZZ>= `  ( |_ `  m ) ) )
3286, 8, 307, 5, 7, 125, 308, 309, 129, 310, 311, 312, 313, 32, 314, 315, 317, 318, 325, 326, 327dchrisumlem2 20471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 i )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) )
329267, 252abssubd 11812 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  i ) ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 i )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) ) ) )
330275, 329eqtrd 2285 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) ) `  i )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 i )  -  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) ) ) ) )
331328, 330, 3033brtr4d 3950 . . . . . . . 8  |-  ( ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  /\  i  e.  ( ZZ>= `  ( |_ `  m ) ) )  ->  ( ( k  e.  NN  |->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  (  seq  1 (  +  ,  F ) `  k ) ) ) ) `  i )  <_  ( ( NN 
X.  { ( ( 2  x.  R )  x.  [_ m  /  n ]_ A ) } ) `  i ) )
332223, 229, 278, 297, 300, 305, 331climle 11990 . . . . . . 7  |-  ( ( ( ph  /\  seq  1 (  +  ,  F )  ~~>  t )  /\  m  e.  ( M [,)  +oo )
)  ->  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) )
333332ralrimiva 2588 . . . . . 6  |-  ( (
ph  /\  seq  1
(  +  ,  F
)  ~~>  t )  ->  A. m  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) )
334 oveq1 5717 . . . . . . . . . 10  |-  ( c  =  ( 2  x.  R )  ->  (
c  x.  B )  =  ( ( 2  x.  R )  x.  B ) )
335334breq2d 3932 . . . . . . . . 9  |-  ( c  =  ( 2  x.  R )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
)  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  B
) ) )
336335ralbidv 2527 . . . . . . . 8  |-  ( c  =  ( 2  x.  R )  ->  ( A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
)  <->  A. x  e.  ( M [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  B
) ) )
337 fveq2 5377 . . . . . . . . . . . . 13  |-  ( m  =  x  ->  ( |_ `  m )  =  ( |_ `  x
) )
338337fveq2d 5381 . . . . . . . . . . . 12  |-  ( m  =  x  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )
339338oveq1d 5725 . . . . . . . . . . 11  |-  ( m  =  x  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  t )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )
340339fveq2d 5381 . . . . . . . . . 10  |-  ( m  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  m ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) ) )
341 vex 2730 . . . . . . . . . . . . 13  |-  m  e. 
_V
342341a1i 12 . . . . . . . . . . . 12  |-  ( m  =  x  ->  m  e.  _V )
343 eqeq2 2262 . . . . . . . . . . . . . 14  |-  ( m  =  x  ->  (
n  =  m  <->  n  =  x ) )
344343biimpa 472 . . . . . . . . . . . . 13  |-  ( ( m  =  x  /\  n  =  m )  ->  n  =  x )
345344, 129syl 17 . . . . . . . . . . . 12  |-  ( ( m  =  x  /\  n  =  m )  ->  A  =  B )
346342, 345csbied 3051 . . . . . . . . . . 11  |-  ( m  =  x  ->  [_ m  /  n ]_ A  =  B )
347346oveq2d 5726 . . . . . . . . . 10  |-  ( m  =  x  ->  (
( 2  x.  R
)  x.  [_ m  /  n ]_ A )  =  ( ( 2  x.  R )  x.  B ) )
348340, 347breq12d 3933 . . . . . . . . 9  |-  ( m  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
)  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  B
) ) )
349348cbvralv 2708 . . . . . . . 8  |-  ( A. m  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
)  <->  A. x  e.  ( M [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  B
) )
350336, 349syl6bbr 256 . . . . . . 7  |-  ( c  =  ( 2  x.  R )  ->  ( A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
)  <->  A. m  e.  ( M [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) ) )
351350rcla4ev 2821 . . . . . 6  |-  ( ( ( 2  x.  R
)  e.  ( 0 [,)  +oo )  /\  A. m  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  m ) )  -  t ) )  <_ 
( ( 2  x.  R )  x.  [_ m  /  n ]_ A
) )  ->  E. c  e.  ( 0 [,)  +oo ) A. x  e.  ( M [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) )
352222, 333, 351syl2anc 645 . . . . 5  |-  ( (
ph  /\  seq  1
(  +  ,  F
)  ~~>  t )  ->  E. c  e.  (
0 [,)  +oo ) A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) )
353 r19.42v 2656 . . . . 5  |-  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) )  <->  (  seq  1 (  +  ,  F )  ~~>  t  /\  E. c  e.  ( 0 [,)  +oo ) A. x  e.  ( M [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
354219, 352, 353sylanbrc 648 . . . 4  |-  ( (
ph  /\  seq  1
(  +  ,  F
)  ~~>  t )  ->  E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
355354ex 425 . . 3  |-  ( ph  ->  (  seq  1 (  +  ,  F )  ~~>  t  ->  E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) ) )
356355eximdv 2018 . 2  |-  ( ph  ->  ( E. t  seq  1 (  +  ,  F )  ~~>  t  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) ) )
357218, 356mpd 16 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   _Vcvv 2727   [_csb 3009    C_ wss 3078   (/)c0 3362   ifcif 3470   {csn 3544   class class class wbr 3920    e. cmpt 3974    X. cxp 4578   dom cdm 4580   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   [,)cico 10536  ..^cfzo 10748   |_cfl 10802    seq cseq 10924   abscabs 11596    ~~> cli 11835    ~~> r crli 11836   sum_csu 12035   Basecbs 13022   0gc0g 13274   ZRHomczrh 16283  ℤ/nczn 16286  DChrcdchr 20303
This theorem is referenced by:  dchrisum  20473
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369