Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrp Unicode version

Theorem cvrp 28294
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 22785 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrp.b  |-  B  =  ( Base `  K
)
cvrp.j  |-  .\/  =  ( join `  K )
cvrp.m  |-  ./\  =  ( meet `  K )
cvrp.z  |-  .0.  =  ( 0. `  K )
cvrp.c  |-  C  =  (  <o  `  K )
cvrp.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrp  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( ( X  ./\  P )  =  .0.  <->  X C
( X  .\/  P
) ) )

Proof of Theorem cvrp
StepHypRef Expression
1 hlomcmcv 28235 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 cvrp.b . . 3  |-  B  =  ( Base `  K
)
3 cvrp.j . . 3  |-  .\/  =  ( join `  K )
4 cvrp.m . . 3  |-  ./\  =  ( meet `  K )
5 cvrp.z . . 3  |-  .0.  =  ( 0. `  K )
6 cvrp.c . . 3  |-  C  =  (  <o  `  K )
7 cvrp.a . . 3  |-  A  =  ( Atoms `  K )
82, 3, 4, 5, 6, 7cvlcvrp 28219 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
( X  ./\  P
)  =  .0.  <->  X C
( X  .\/  P
) ) )
91, 8syl3an1 1220 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( ( X  ./\  P )  =  .0.  <->  X C
( X  .\/  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   joincjn 13922   meetcmee 13923   0.cp0 13987   CLatccla 14057   OMLcoml 28054    <o ccvr 28141   Atomscatm 28142   CvLatclc 28144   HLchlt 28229
This theorem is referenced by:  atcvrj1  28309
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230
  Copyright terms: Public domain W3C validator