MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Unicode version

Theorem cp 7556
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 7550 that collapses a proper class into a set of minimum rank. The wff  ph can be thought of as  ph ( x ,  y ). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem cp
StepHypRef Expression
1 vex 2792 . . 3  |-  z  e. 
_V
21cplem2 7555 . 2  |-  E. w A. x  e.  z 
( { y  | 
ph }  =/=  (/)  ->  ( { y  |  ph }  i^i  w )  =/=  (/) )
3 abn0 3474 . . . . 5  |-  ( { y  |  ph }  =/=  (/)  <->  E. y ph )
4 elin 3359 . . . . . . . 8  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  { y  |  ph }  /\  y  e.  w
) )
5 abid 2272 . . . . . . . . 9  |-  ( y  e.  { y  | 
ph }  <->  ph )
65anbi1i 678 . . . . . . . 8  |-  ( ( y  e.  { y  |  ph }  /\  y  e.  w )  <->  (
ph  /\  y  e.  w ) )
7 ancom 439 . . . . . . . 8  |-  ( (
ph  /\  y  e.  w )  <->  ( y  e.  w  /\  ph )
)
84, 6, 73bitri 264 . . . . . . 7  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  w  /\  ph )
)
98exbii 1570 . . . . . 6  |-  ( E. y  y  e.  ( { y  |  ph }  i^i  w )  <->  E. y
( y  e.  w  /\  ph ) )
10 nfab1 2422 . . . . . . . 8  |-  F/_ y { y  |  ph }
11 nfcv 2420 . . . . . . . 8  |-  F/_ y
w
1210, 11nfin 3376 . . . . . . 7  |-  F/_ y
( { y  | 
ph }  i^i  w
)
1312n0f 3464 . . . . . 6  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  y  e.  ( { y  | 
ph }  i^i  w
) )
14 df-rex 2550 . . . . . 6  |-  ( E. y  e.  w  ph  <->  E. y ( y  e.  w  /\  ph )
)
159, 13, 143bitr4i 270 . . . . 5  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  e.  w  ph )
163, 15imbi12i 318 . . . 4  |-  ( ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  ( E. y ph  ->  E. y  e.  w  ph ) )
1716ralbii 2568 . . 3  |-  ( A. x  e.  z  ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph ) )
1817exbii 1570 . 2  |-  ( E. w A. x  e.  z  ( { y  |  ph }  =/=  (/) 
->  ( { y  | 
ph }  i^i  w
)  =/=  (/) )  <->  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph ) )
192, 18mpbi 201 1  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   E.wex 1529    e. wcel 1685   {cab 2270    =/= wne 2447   A.wral 2544   E.wrex 2545    i^i cin 3152   (/)c0 3456
This theorem is referenced by:  bnd  7557
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-reg 7301  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6383  df-rdg 6418  df-r1 7431  df-rank 7432
  Copyright terms: Public domain W3C validator