MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Unicode version

Theorem cp 7577
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 7571 that collapses a proper class into a set of minimum rank. The wff  ph can be thought of as  ph ( x ,  y ). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem cp
StepHypRef Expression
1 vex 2804 . . 3  |-  z  e. 
_V
21cplem2 7576 . 2  |-  E. w A. x  e.  z 
( { y  | 
ph }  =/=  (/)  ->  ( { y  |  ph }  i^i  w )  =/=  (/) )
3 abn0 3486 . . . . 5  |-  ( { y  |  ph }  =/=  (/)  <->  E. y ph )
4 elin 3371 . . . . . . . 8  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  { y  |  ph }  /\  y  e.  w
) )
5 abid 2284 . . . . . . . . 9  |-  ( y  e.  { y  | 
ph }  <->  ph )
65anbi1i 676 . . . . . . . 8  |-  ( ( y  e.  { y  |  ph }  /\  y  e.  w )  <->  (
ph  /\  y  e.  w ) )
7 ancom 437 . . . . . . . 8  |-  ( (
ph  /\  y  e.  w )  <->  ( y  e.  w  /\  ph )
)
84, 6, 73bitri 262 . . . . . . 7  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  w  /\  ph )
)
98exbii 1572 . . . . . 6  |-  ( E. y  y  e.  ( { y  |  ph }  i^i  w )  <->  E. y
( y  e.  w  /\  ph ) )
10 nfab1 2434 . . . . . . . 8  |-  F/_ y { y  |  ph }
11 nfcv 2432 . . . . . . . 8  |-  F/_ y
w
1210, 11nfin 3388 . . . . . . 7  |-  F/_ y
( { y  | 
ph }  i^i  w
)
1312n0f 3476 . . . . . 6  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  y  e.  ( { y  | 
ph }  i^i  w
) )
14 df-rex 2562 . . . . . 6  |-  ( E. y  e.  w  ph  <->  E. y ( y  e.  w  /\  ph )
)
159, 13, 143bitr4i 268 . . . . 5  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  e.  w  ph )
163, 15imbi12i 316 . . . 4  |-  ( ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  ( E. y ph  ->  E. y  e.  w  ph ) )
1716ralbii 2580 . . 3  |-  ( A. x  e.  z  ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph ) )
1817exbii 1572 . 2  |-  ( E. w A. x  e.  z  ( { y  |  ph }  =/=  (/) 
->  ( { y  | 
ph }  i^i  w
)  =/=  (/) )  <->  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph ) )
192, 18mpbi 199 1  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557    i^i cin 3164   (/)c0 3468
This theorem is referenced by:  bnd  7578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator