MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp Unicode version

Theorem cncnp 16841
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncnp
StepHypRef Expression
1 iscn 16797 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
21simprbda 609 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  F : X --> Y )
3 eqid 2253 . . . . . . 7  |-  U. J  =  U. J
43cncnpi 16839 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  U. J )  ->  F  e.  ( ( J  CnP  K
) `  x )
)
54ralrimiva 2588 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
65adantl 454 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
7 toponuni 16497 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
87ad2antrr 709 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  X  =  U. J )
98raleqdv 2694 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  <->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) ) )
106, 9mpbird 225 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
112, 10jca 520 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
12 simprl 735 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F : X --> Y )
13 cnvimass 4940 . . . . . . . . . 10  |-  ( `' F " y ) 
C_  dom  F
14 fdm 5250 . . . . . . . . . . 11  |-  ( F : X --> Y  ->  dom  F  =  X )
1514adantl 454 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  dom  F  =  X )
1613, 15syl5sseq 3147 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( `' F " y )  C_  X
)
17 ssralv 3158 . . . . . . . . 9  |-  ( ( `' F " y ) 
C_  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x ) ) )
1816, 17syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) F  e.  ( ( J  CnP  K ) `
 x ) ) )
19 simprr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  e.  ( ( J  CnP  K ) `  x ) )
20 simpllr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  y  e.  K )
21 ffn 5246 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  F  Fn  X )
2221ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  Fn  X )
23 simprl 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  x  e.  ( `' F "
y ) )
24 elpreima 5497 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  (
x  e.  ( `' F " y )  <-> 
( x  e.  X  /\  ( F `  x
)  e.  y ) ) )
2524simplbda 610 . . . . . . . . . . . . 13  |-  ( ( F  Fn  X  /\  x  e.  ( `' F " y ) )  ->  ( F `  x )  e.  y )
2622, 23, 25syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( F `  x )  e.  y )
27 cnpimaex 16818 . . . . . . . . . . . 12  |-  ( ( F  e.  ( ( J  CnP  K ) `
 x )  /\  y  e.  K  /\  ( F `  x )  e.  y )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u
)  C_  y )
)
2819, 20, 26, 27syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u )  C_  y ) )
29 simpllr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  F : X --> Y )
30 ffun 5248 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  Fun  F )
3129, 30syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  Fun  F )
32 simpll 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  ->  J  e.  (TopOn `  X )
)
3332ad2antrr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  J  e.  (TopOn `  X )
)
34 toponss 16499 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  u  e.  J )  ->  u  C_  X )
3533, 34sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_  X )
3629, 14syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  dom  F  =  X )
3735, 36sseqtr4d 3136 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_ 
dom  F )
38 funimass3 5493 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  u  C_ 
dom  F )  -> 
( ( F "
u )  C_  y  <->  u 
C_  ( `' F " y ) ) )
3931, 37, 38syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( F " u
)  C_  y  <->  u  C_  ( `' F " y ) ) )
4039anbi2d 687 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( x  e.  u  /\  ( F " u
)  C_  y )  <->  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4140rexbidva 2524 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( E. u  e.  J  ( x  e.  u  /\  ( F " u
)  C_  y )  <->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4228, 41mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
4342expr 601 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  x  e.  ( `' F "
y ) )  -> 
( F  e.  ( ( J  CnP  K
) `  x )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4443ralimdva 2583 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4518, 44syld 42 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4645impr 605 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
4746an32s 782 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
48 topontop 16496 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4948ad3antrrr 713 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  J  e.  Top )
50 eltop2 16545 . . . . . 6  |-  ( J  e.  Top  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5149, 50syl 17 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5247, 51mpbird 225 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
5352ralrimiva 2588 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  A. y  e.  K  ( `' F " y )  e.  J )
541adantr 453 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
5512, 53, 54mpbir2and 893 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F  e.  ( J  Cn  K
) )
5611, 55impbida 808 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510    C_ wss 3078   U.cuni 3727   `'ccnv 4579   dom cdm 4580   "cima 4583   Fun wfun 4586    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710   Topctop 16463  TopOnctopon 16464    Cn ccn 16786    CnP ccnp 16787
This theorem is referenced by:  cncnp2  16842  cnconst2  16843  1stccn  17021  ptcn  17153  cnflf  17529  cnfcf  17569  symgtgp  17616  ghmcnp  17629  metcn  17921  txmetcn  17926  cnlimc  19070  dvcn  19102  dvcnvre  19198  psercn  19634  abelth  19649  cxpcn3  19956  cvmlift2lem11  23015  cvmlift2lem12  23016  cvmlift3lem8  23028
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660  df-topgen 13218  df-top 16468  df-topon 16471  df-cn 16789  df-cnp 16790
  Copyright terms: Public domain W3C validator