Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr3N Unicode version

Theorem cmtbr3N 28133
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 22035 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b  |-  B  =  ( Base `  K
)
cmtbr2.j  |-  .\/  =  ( join `  K )
cmtbr2.m  |-  ./\  =  ( meet `  K )
cmtbr2.o  |-  ._|_  =  ( oc `  K )
cmtbr2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtbr3N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )

Proof of Theorem cmtbr3N
StepHypRef Expression
1 cmtbr2.b . . . . 5  |-  B  =  ( Base `  K
)
2 cmtbr2.c . . . . 5  |-  C  =  ( cm `  K
)
31, 2cmtcomN 28128 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
Y C X ) )
4 cmtbr2.j . . . . . 6  |-  .\/  =  ( join `  K )
5 cmtbr2.m . . . . . 6  |-  ./\  =  ( meet `  K )
6 cmtbr2.o . . . . . 6  |-  ._|_  =  ( oc `  K )
71, 4, 5, 6, 2cmtbr2N 28132 . . . . 5  |-  ( ( K  e.  OML  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
873com23 1162 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
93, 8bitrd 246 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
10 oveq2 5718 . . . . . 6  |-  ( Y  =  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) )  ->  ( X  ./\  Y )  =  ( X 
./\  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) ) ) )
1110adantl 454 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  Y )  =  ( X 
./\  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) ) ) )
12 omlol 28119 . . . . . . . . 9  |-  ( K  e.  OML  ->  K  e.  OL )
13123ad2ant1 981 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
14 simp2 961 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
15 omllat 28121 . . . . . . . . . 10  |-  ( K  e.  OML  ->  K  e.  Lat )
16153ad2ant1 981 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
17 simp3 962 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
181, 4latjcl 14000 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .\/  X
)  e.  B )
1916, 17, 14, 18syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  X
)  e.  B )
20 omlop 28120 . . . . . . . . . . 11  |-  ( K  e.  OML  ->  K  e.  OP )
21203ad2ant1 981 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
221, 6opoccl 28073 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
2321, 14, 22syl2anc 645 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
241, 4latjcl 14000 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  ( Y  .\/  (  ._|_  `  X
) )  e.  B
)
2516, 17, 23, 24syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  (  ._|_  `  X ) )  e.  B )
261, 5latmassOLD 28108 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( Y  .\/  X
)  e.  B  /\  ( Y  .\/  (  ._|_  `  X ) )  e.  B ) )  -> 
( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) ) )
2713, 14, 19, 25, 26syl13anc 1189 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) ) )
281, 4latjcom 14009 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .\/  X
)  =  ( X 
.\/  Y ) )
2916, 17, 14, 28syl3anc 1187 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  X
)  =  ( X 
.\/  Y ) )
3029oveq2d 5726 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( Y  .\/  X ) )  =  ( X  ./\  ( X  .\/  Y ) ) )
311, 4, 5latabs2 14038 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( X  .\/  Y ) )  =  X )
3215, 31syl3an1 1220 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( X  .\/  Y ) )  =  X )
3330, 32eqtrd 2285 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( Y  .\/  X ) )  =  X )
341, 4latjcom 14009 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  ( Y  .\/  (  ._|_  `  X
) )  =  ( (  ._|_  `  X ) 
.\/  Y ) )
3516, 17, 23, 34syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  (  ._|_  `  X ) )  =  ( (  ._|_  `  X )  .\/  Y
) )
3633, 35oveq12d 5728 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) ) )
3727, 36eqtr3d 2287 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  =  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
) )
3837adantr 453 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  ( ( Y  .\/  X )  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  =  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
) )
3911, 38eqtr2d 2286 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y ) )
4039ex 425 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  ( ( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  -> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )
419, 40sylbid 208 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y ) ) )
42 simp1 960 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
431, 6opoccl 28073 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
4421, 17, 43syl2anc 645 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
451, 5latmcl 14001 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  ./\  (  ._|_  `  Y
) )  e.  B
)
4616, 14, 44, 45syl3anc 1187 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  Y ) )  e.  B )
4742, 46, 143jca 1137 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  X  e.  B ) )
48 eqid 2253 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
491, 48, 5latmle1 14026 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  ./\  (  ._|_  `  Y
) ) ( le
`  K ) X )
5016, 14, 44, 49syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  Y ) ) ( le `  K
) X )
511, 48, 4, 5, 6omllaw2N 28123 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  X  e.  B )  ->  (
( X  ./\  (  ._|_  `  Y ) ) ( le `  K
) X  ->  (
( X  ./\  (  ._|_  `  Y ) ) 
.\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )
)  =  X ) )
5247, 50, 51sylc 58 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
) )  =  X )
531, 6opoccl 28073 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B )  ->  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  e.  B
)
5421, 46, 53syl2anc 645 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  e.  B )
551, 5latmcl 14001 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  e.  B  /\  X  e.  B
)  ->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  e.  B )
5616, 54, 14, 55syl3anc 1187 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  e.  B )
571, 4latjcom 14009 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  ( ( 
._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  e.  B )  ->  ( ( X 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X
) )  =  ( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
5816, 46, 56, 57syl3anc 1187 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
) )  =  ( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
5952, 58eqtr3d 2287 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  =  ( ( (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
6059adantr 453 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  X  =  ( ( ( 
._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
611, 4, 5, 6oldmm3N 28098 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  .\/  Y )
)
6212, 61syl3an1 1220 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  .\/  Y )
)
6362oveq2d 5726 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) ) )  =  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) ) )
641, 5latmcom 14025 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  e.  B
)  ->  ( X  ./\  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )
)
6516, 14, 54, 64syl3anc 1187 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X ) )
6663, 65eqtr3d 2287 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X ) )
6766eqeq1d 2261 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  <->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  =  ( X 
./\  Y ) ) )
68 oveq1 5717 . . . . . . 7  |-  ( ( (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  ./\  X )  =  ( X 
./\  Y )  -> 
( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )  .\/  ( X  ./\  (  ._|_  `  Y ) ) )  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
6967, 68syl6bi 221 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  -> 
( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )  .\/  ( X  ./\  (  ._|_  `  Y ) ) )  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
7069imp 420 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  (
( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
7160, 70eqtrd 2285 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  X  =  ( ( X 
./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
7271ex 425 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  ->  X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
731, 4, 5, 6, 2cmtvalN 28090 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
7472, 73sylibrd 227 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  ->  X C Y ) )
7541, 74impbid 185 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   occoc 13090   joincjn 13922   meetcmee 13923   Latclat 13995   OPcops 28051   cmccmtN 28052   OLcol 28053   OMLcoml 28054
This theorem is referenced by:  cmtbr4N  28134  omlfh1N  28137
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-lat 13996  df-oposet 28055  df-cmtN 28056  df-ol 28057  df-oml 28058
  Copyright terms: Public domain W3C validator