HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocini Unicode version

Theorem chocini 21863
Description: Intersection of a closed subspace and its orthocomplement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
ch0le.1  |-  A  e. 
CH
Assertion
Ref Expression
chocini  |-  ( A  i^i  ( _|_ `  A
) )  =  0H

Proof of Theorem chocini
StepHypRef Expression
1 ch0le.1 . . 3  |-  A  e. 
CH
21chshii 21637 . 2  |-  A  e.  SH
3 ocin 21705 . 2  |-  ( A  e.  SH  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
42, 3ax-mp 10 1  |-  ( A  i^i  ( _|_ `  A
) )  =  0H
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621    i^i cin 3077   ` cfv 4592   SHcsh 21338   CHcch 21339   _|_cort 21340   0Hc0h 21345
This theorem is referenced by:  chocin  21904  pjoml2i  22012  hatomistici  22772  atordi  22794  mddmdin0i  22841
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-hilex 21409  ax-hfvadd 21410  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvmul0 21420  ax-hfi 21488  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662
  Copyright terms: Public domain W3C validator