Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Unicode version

Theorem cdleml9 29862
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b  |-  B  =  ( Base `  K
)
cdleml6.j  |-  .\/  =  ( join `  K )
cdleml6.m  |-  ./\  =  ( meet `  K )
cdleml6.h  |-  H  =  ( LHyp `  K
)
cdleml6.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml6.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml6.p  |-  Q  =  ( ( oc `  K ) `  W
)
cdleml6.z  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
cdleml6.y  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdleml6.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
cdleml6.u  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
cdleml6.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml6.o  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  =/=  .0.  )
Distinct variable groups:    g, b,
z,  ./\    .\/ , b, g, z    B, b, f, g, z   
h, b, g, z   
s, b, g, z    H, b, g, z    K, b, g, z    Q, b, g, z    R, b, g, z    T, b, f, g, z    W, b, g, z    z, Y   
g, Z
Allowed substitution hints:    B( h, s)    Q( f, h, s)    R( f, h, s)    T( h, s)    U( z, f, g, h, s, b)    E( z, f, g, h, s, b)    H( f, h, s)    .\/ ( f, h, s)    K( f, h, s)    ./\ ( f, h, s)    W( f, h, s)    X( z, f, g, h, s, b)    Y( f, g, h, s, b)    .0. ( z, f, g, h, s, b)    Z( z, f, h, s, b)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleml6.h . . . 4  |-  H  =  ( LHyp `  K
)
3 cdleml6.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 cdleml6.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
5 cdleml6.o . . . 4  |-  .0.  =  ( f  e.  T  |->  (  _I  |`  B ) )
61, 2, 3, 4, 5tendo1ne0 29706 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  .0.  )
763ad2ant1 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
(  _I  |`  T )  =/=  .0.  )
8 cdleml6.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 cdleml6.m . . . . . . 7  |-  ./\  =  ( meet `  K )
10 cdleml6.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
11 cdleml6.p . . . . . . 7  |-  Q  =  ( ( oc `  K ) `  W
)
12 cdleml6.z . . . . . . 7  |-  Z  =  ( ( Q  .\/  ( R `  b ) )  ./\  ( (
h `  Q )  .\/  ( R `  (
b  o.  `' ( s `  h ) ) ) ) )
13 cdleml6.y . . . . . . 7  |-  Y  =  ( ( Q  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
14 cdleml6.x . . . . . . 7  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  ( s `  h ) )  /\  ( R `  b )  =/=  ( R `  g ) )  -> 
( z `  Q
)  =  Y ) )
15 cdleml6.u . . . . . . 7  |-  U  =  ( g  e.  T  |->  if ( ( s `
 h )  =  h ,  g ,  X ) )
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 29861 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  o.  s
)  =  (  _I  |`  T ) )
1716adantr 453 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  ( U  o.  s
)  =  (  _I  |`  T ) )
18 coeq1 4748 . . . . . 6  |-  ( U  =  .0.  ->  ( U  o.  s )  =  (  .0.  o.  s
) )
19 simp1 960 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
20 simp3l 988 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
s  e.  E )
211, 2, 3, 4, 5tendo0mul 29704 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  (  .0.  o.  s )  =  .0.  )
2219, 20, 21syl2anc 645 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
(  .0.  o.  s
)  =  .0.  )
2318, 22sylan9eqr 2307 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  ( U  o.  s
)  =  .0.  )
2417, 23eqtr3d 2287 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  /\  U  =  .0.  )  ->  (  _I  |`  T )  =  .0.  )
2524ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( U  =  .0. 
->  (  _I  |`  T )  =  .0.  ) )
2625necon3d 2450 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  -> 
( (  _I  |`  T )  =/=  .0.  ->  U  =/=  .0.  ) )
277, 26mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  h  =/=  (  _I  |`  B ) )  /\  ( s  e.  E  /\  s  =/=  .0.  ) )  ->  U  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   ifcif 3470    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   occoc 13090   joincjn 13922   meetcmee 13923   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036   TEndoctendo 29630
This theorem is referenced by:  erngdvlem4  29869  erngdvlem4-rN  29877
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037  df-tendo 29633
  Copyright terms: Public domain W3C validator