Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35 Unicode version

Theorem cdlemk35 29790
Description: Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 29789 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b  |-  B  =  ( Base `  K
)
cdlemk4.l  |-  .<_  =  ( le `  K )
cdlemk4.j  |-  .\/  =  ( join `  K )
cdlemk4.m  |-  ./\  =  ( meet `  K )
cdlemk4.a  |-  A  =  ( Atoms `  K )
cdlemk4.h  |-  H  =  ( LHyp `  K
)
cdlemk4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk4.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk4.y  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
cdlemk4.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk35  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  e.  T )
Distinct variable groups:    z, b,  ./\    .<_ , b, z    .\/ , b, z    A, b, z    B, b, z    F, b, z    G, b, z    H, b, z    K, b, z    N, b, z    P, b, z    R, b, z    T, b, z    W, b, z
Allowed substitution hints:    X( z, b)    Y( z, b)    Z( z, b)

Proof of Theorem cdlemk35
StepHypRef Expression
1 cdlemk4.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemk4.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemk4.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemk4.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemk4.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemk4.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemk4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk4.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
9 eqid 2253 . . . 4  |-  ( f  e.  T  |->  ( iota_ i  e.  T ( i `
 P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) )  =  ( f  e.  T  |->  (
iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 eqid 2253 . . . 4  |-  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) )  =  ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
11 eqid 2253 . . . 4  |-  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) ) G ) ) )  =  (
iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  d
) `  P )  .\/  ( R `  (
e  o.  `' d ) ) ) ) ) ) G ) ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk34 29788 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  =  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
13 cdlemk4.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
14 cdlemk4.y . . . . . . . . . 10  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
15 cdlemk4.z . . . . . . . . . . . 12  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
1615oveq1i 5720 . . . . . . . . . . 11  |-  ( Z 
.\/  ( R `  ( G  o.  `' b ) ) )  =  ( ( ( P  .\/  ( R `
 b ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( b  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' b ) ) )
1716oveq2i 5721 . . . . . . . . . 10  |-  ( ( P  .\/  ( R `
 G ) ) 
./\  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) )
1814, 17eqtri 2273 . . . . . . . . 9  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) )
1918eqeq2i 2263 . . . . . . . 8  |-  ( ( z `  P )  =  Y  <->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) )
2019imbi2i 305 . . . . . . 7  |-  ( ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z `  P )  =  Y )  <->  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2120ralbii 2531 . . . . . 6  |-  ( A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z `  P )  =  Y )  <->  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2221a1i 12 . . . . 5  |-  ( z  e.  T  ->  ( A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y )  <->  A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) ) )
2322riotabiia 6208 . . . 4  |-  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  Y ) )  =  (
iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2413, 23eqtri 2273 . . 3  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( (
( P  .\/  ( R `  b )
)  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) ) 
.\/  ( R `  ( G  o.  `' b ) ) ) ) ) )
2512, 24syl6eqr 2303 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  =  X )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk29-3 29789 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b ( d  e.  T , 
e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) ) G ) ) )  e.  T )
2725, 26eqeltrrd 2328 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   class class class wbr 3920    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemk36  29791  cdlemk39  29794  cdlemk35s  29815
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator