Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sdnN Unicode version

Theorem cdleme31sdnN 29265
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme31sdn.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme31sdn.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme31sdn.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdleme31sdnN  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D
)
Distinct variable groups:    t,  .\/    t, 
./\    t, P    t, Q    t, U    t, W    t,
s
Allowed substitution hints:    C( t, s)    D( t, s)    P( s)    Q( s)    U( s)    I(
t, s)    .\/ ( s)    .<_ ( t, s)    ./\ ( s)    N( t,
s)    W( s)

Proof of Theorem cdleme31sdnN
StepHypRef Expression
1 cdleme31sdn.n . 2  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
2 biid 229 . . 3  |-  ( s 
.<_  ( P  .\/  Q
)  <->  s  .<_  ( P 
.\/  Q ) )
3 vex 2730 . . . 4  |-  s  e. 
_V
4 cdleme31sdn.d . . . . 5  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
5 cdleme31sdn.c . . . . 5  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
64, 5cdleme31sc 29262 . . . 4  |-  ( s  e.  _V  ->  [_ s  /  t ]_ D  =  C )
73, 6ax-mp 10 . . 3  |-  [_ s  /  t ]_ D  =  C
82, 7ifbieq2i 3489 . 2  |-  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D )  =  if ( s  .<_  ( P 
.\/  Q ) ,  I ,  C )
91, 8eqtr4i 2276 1  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  [_ s  /  t ]_ D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   _Vcvv 2727   [_csb 3009   ifcif 3470   class class class wbr 3920  (class class class)co 5710
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fv 4608  df-ov 5713
  Copyright terms: Public domain W3C validator