Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22cN Unicode version

Theorem cdleme22cN 29220
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 5th line on p. 115. Show that t  \/ v =/= p  \/ q and s  <_ p  \/ q implies  -. v  <_ p  \/ q. (Contributed by NM, 3-Dec-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdleme22cN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  V  .<_  ( P 
.\/  Q ) )

Proof of Theorem cdleme22cN
StepHypRef Expression
1 simp11l 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 hllat 28242 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  Lat )
4 simp12l 1073 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  P  e.  A )
5 simp13 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  Q  e.  A )
6 eqid 2253 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
8 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
96, 7, 8hlatjcl 28245 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
101, 4, 5, 9syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
11 simp11r 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  W  e.  H )
12 cdleme22.h . . . . . 6  |-  H  =  ( LHyp `  K
)
136, 12lhpbase 28876 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1411, 13syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  W  e.  ( Base `  K ) )
15 cdleme22.l . . . . 5  |-  .<_  =  ( le `  K )
16 cdleme22.m . . . . 5  |-  ./\  =  ( meet `  K )
176, 15, 16latmle2 14027 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
183, 10, 14, 17syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  W )
19 simp21r 1078 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  S  .<_  W )
20 nbrne2 3938 . . 3  |-  ( ( ( ( P  .\/  Q )  ./\  W )  .<_  W  /\  -.  S  .<_  W )  ->  (
( P  .\/  Q
)  ./\  W )  =/=  S )
2118, 19, 20syl2anc 645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  =/=  S )
22 simp32l 1085 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  .<_  ( T  .\/  V ) )
2322adantr 453 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( T  .\/  V
) )
241adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
2511adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  W  e.  H )
26 simpl12 1036 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
27 simpl13 1037 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
28 simp31l 1083 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
2928adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
30 simp23l 1081 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  V  e.  A )
3130adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  e.  A )
32 simp23r 1082 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  V  .<_  W )
3332adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  .<_  W )
34 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  .<_  ( P  .\/  Q
) )
35 eqid 2253 . . . . . . . . . . . 12  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
3615, 7, 16, 8, 12, 35cdleme22aa 29217 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  V  .<_  W  /\  V  .<_  ( P  .\/  Q ) ) )  ->  V  =  ( ( P  .\/  Q )  ./\  W ) )
3724, 25, 26, 27, 29, 31, 33, 34, 36syl233anc 1216 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  V  =  ( ( P 
.\/  Q )  ./\  W ) )
3837oveq2d 5726 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( T  .\/  V )  =  ( T  .\/  (
( P  .\/  Q
)  ./\  W )
) )
3923, 38breqtrd 3944 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( T  .\/  (
( P  .\/  Q
)  ./\  W )
) )
40 simp32r 1086 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  .<_  ( P  .\/  Q ) )
4140adantr 453 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  Q
) )
42 simp21l 1077 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  e.  A )
436, 8atbase 28168 . . . . . . . . . . 11  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
4442, 43syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  e.  ( Base `  K ) )
45 simp22 994 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  T  e.  A )
46 simp12r 1074 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  P  .<_  W )
4715, 7, 16, 8, 12lhpat 28921 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  ( ( P 
.\/  Q )  ./\  W )  e.  A )
481, 11, 4, 46, 5, 28, 47syl222anc 1203 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  e.  A )
496, 7, 8hlatjcl 28245 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  T  e.  A  /\  ( ( P  .\/  Q )  ./\  W )  e.  A )  ->  ( T  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
501, 45, 48, 49syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  e.  ( Base `  K ) )
516, 15, 16latlem12 14028 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( T  .\/  ( ( P  .\/  Q ) 
./\  W ) )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( S  .<_  ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  /\  S  .<_  ( P  .\/  Q
) )  <->  S  .<_  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) ) )
523, 44, 50, 10, 51syl13anc 1189 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( S  .<_  ( T  .\/  ( ( P  .\/  Q ) 
./\  W ) )  /\  S  .<_  ( P 
.\/  Q ) )  <-> 
S  .<_  ( ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  ( P  .\/  Q ) ) ) )
5352adantr 453 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( S  .<_  ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  /\  S  .<_  ( P  .\/  Q
) )  <->  S  .<_  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) ) )
5439, 41, 53mpbi2and 892 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( ( T  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( P  .\/  Q ) ) )
55 simp31r 1084 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  S  =/=  T )
5642, 45, 553jca 1137 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )
57 simp33 998 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  .\/  V
)  =/=  ( P 
.\/  Q ) )
5857, 22, 403jca 1137 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) )
5915, 7, 16, 8, 12cdleme22b 29219 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  S  =/=  T
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( V  e.  A  /\  ( ( T  .\/  V )  =/=  ( P 
.\/  Q )  /\  S  .<_  ( T  .\/  V )  /\  S  .<_  ( P  .\/  Q ) ) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
601, 56, 4, 5, 28, 30, 58, 59syl232anc 1214 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
61 hlatl 28239 . . . . . . . . . . . . 13  |-  ( K  e.  HL  ->  K  e.  AtLat )
621, 61syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  AtLat )
63 eqid 2253 . . . . . . . . . . . . 13  |-  ( 0.
`  K )  =  ( 0. `  K
)
646, 15, 16, 63, 8atnle 28196 . . . . . . . . . . . 12  |-  ( ( K  e.  AtLat  /\  T  e.  A  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( -.  T  .<_  ( P 
.\/  Q )  <->  ( T  ./\  ( P  .\/  Q
) )  =  ( 0. `  K ) ) )
6562, 45, 10, 64syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( -.  T  .<_  ( P  .\/  Q )  <-> 
( T  ./\  ( P  .\/  Q ) )  =  ( 0. `  K ) ) )
6660, 65mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( T  ./\  ( P  .\/  Q ) )  =  ( 0. `  K ) )
6766oveq1d 5725 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  ./\  ( P  .\/  Q ) )  .\/  ( ( P  .\/  Q ) 
./\  W ) )  =  ( ( 0.
`  K )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
686, 8atbase 28168 . . . . . . . . . . 11  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
6945, 68syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  T  e.  ( Base `  K ) )
706, 15, 16latmle1 14026 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
713, 10, 14, 70syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q
) )
726, 15, 7, 16, 8atmod4i1 28744 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( P 
.\/  Q )  ./\  W )  e.  A  /\  T  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  (
( P  .\/  Q
)  ./\  W )  .<_  ( P  .\/  Q
) )  ->  (
( T  ./\  ( P  .\/  Q ) ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( ( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) ) )
731, 48, 69, 10, 71, 72syl131anc 1200 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  ./\  ( P  .\/  Q ) )  .\/  ( ( P  .\/  Q ) 
./\  W ) )  =  ( ( T 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  ( P  .\/  Q ) ) )
74 hlol 28240 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
751, 74syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  K  e.  OL )
766, 16latmcl 14001 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
773, 10, 14, 76syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) )
786, 7, 63olj02 28105 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) )  ->  (
( 0. `  K
)  .\/  ( ( P  .\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  W )
)
7975, 77, 78syl2anc 645 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( 0. `  K )  .\/  (
( P  .\/  Q
)  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  W ) )
8067, 73, 793eqtr3d 2293 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( T  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( P  .\/  Q ) )  =  ( ( P  .\/  Q )  ./\  W )
)
8180adantr 453 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( T  .\/  (
( P  .\/  Q
)  ./\  W )
)  ./\  ( P  .\/  Q ) )  =  ( ( P  .\/  Q )  ./\  W )
)
8254, 81breqtrd 3944 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( ( P  .\/  Q )  ./\  W )
)
8315, 8atcmp 28190 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  S  e.  A  /\  (
( P  .\/  Q
)  ./\  W )  e.  A )  ->  ( S  .<_  ( ( P 
.\/  Q )  ./\  W )  <->  S  =  (
( P  .\/  Q
)  ./\  W )
) )
8462, 42, 48, 83syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( S  .<_  ( ( P  .\/  Q ) 
./\  W )  <->  S  =  ( ( P  .\/  Q )  ./\  W )
) )
8584adantr 453 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  ( S  .<_  ( ( P 
.\/  Q )  ./\  W )  <->  S  =  (
( P  .\/  Q
)  ./\  W )
) )
8682, 85mpbid 203 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  S  =  ( ( P 
.\/  Q )  ./\  W ) )
8786eqcomd 2258 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  /\  V  .<_  ( P  .\/  Q ) )  ->  (
( P  .\/  Q
)  ./\  W )  =  S )
8887ex 425 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( V  .<_  ( P 
.\/  Q )  -> 
( ( P  .\/  Q )  ./\  W )  =  S ) )
8988necon3ad 2448 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  -> 
( ( ( P 
.\/  Q )  ./\  W )  =/=  S  ->  -.  V  .<_  ( P 
.\/  Q ) ) )
9021, 89mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( S  .<_  ( T 
.\/  V )  /\  S  .<_  ( P  .\/  Q ) )  /\  ( T  .\/  V )  =/=  ( P  .\/  Q
) ) )  ->  -.  V  .<_  ( P 
.\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   0.cp0 13987   Latclat 13995   OLcol 28053   Atomscatm 28142   AtLatcal 28143   HLchlt 28229   LHypclh 28862
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866
  Copyright terms: Public domain W3C validator