Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21b Unicode version

Theorem cdleme21b 29204
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme21a.l  |-  .<_  =  ( le `  K )
cdleme21a.j  |-  .\/  =  ( join `  K )
cdleme21a.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme21b  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )

Proof of Theorem cdleme21b
StepHypRef Expression
1 simp23 995 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
2 simp11 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  K  e.  HL )
3 hlcvl 28238 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CvLat )
42, 3syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  K  e.  CvLat )
5 simp3l 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
z  e.  A )
6 simp13 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  Q  e.  A )
7 simp12 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  P  e.  A )
8 simp21 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  S  e.  A )
9 cdleme21a.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
10 cdleme21a.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
11 cdleme21a.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
129, 10, 11atnlej1 28257 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  =/=  P )
1312necomd 2495 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  P  =/=  S )
142, 8, 7, 6, 1, 13syl131anc 1200 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  P  =/=  S )
15 simp3r 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( P  .\/  z
)  =  ( S 
.\/  z ) )
1611, 10cvlsupr5 28225 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  z  e.  A )  /\  ( P  =/=  S  /\  ( P  .\/  z
)  =  ( S 
.\/  z ) ) )  ->  z  =/=  P )
174, 7, 8, 5, 14, 15, 16syl132anc 1205 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
z  =/=  P )
189, 10, 11cvlatexch1 28215 . . . . 5  |-  ( ( K  e.  CvLat  /\  (
z  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  z  =/=  P
)  ->  ( z  .<_  ( P  .\/  Q
)  ->  Q  .<_  ( P  .\/  z ) ) )
194, 5, 6, 7, 17, 18syl131anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( z  .<_  ( P 
.\/  Q )  ->  Q  .<_  ( P  .\/  z ) ) )
2011, 10cvlsupr8 28228 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  S  e.  A  /\  z  e.  A )  /\  ( P  =/=  S  /\  ( P  .\/  z
)  =  ( S 
.\/  z ) ) )  ->  ( P  .\/  S )  =  ( P  .\/  z ) )
214, 7, 8, 5, 14, 15, 20syl132anc 1205 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( P  .\/  S
)  =  ( P 
.\/  z ) )
2221breq2d 3932 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( Q  .<_  ( P 
.\/  S )  <->  Q  .<_  ( P  .\/  z ) ) )
2319, 22sylibrd 227 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( z  .<_  ( P 
.\/  Q )  ->  Q  .<_  ( P  .\/  S ) ) )
24 simp22 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  P  =/=  Q )
2524necomd 2495 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  Q  =/=  P )
269, 10, 11cvlatexch1 28215 . . . 4  |-  ( ( K  e.  CvLat  /\  ( Q  e.  A  /\  S  e.  A  /\  P  e.  A )  /\  Q  =/=  P
)  ->  ( Q  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  Q ) ) )
274, 6, 8, 7, 25, 26syl131anc 1200 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( Q  .<_  ( P 
.\/  S )  ->  S  .<_  ( P  .\/  Q ) ) )
2823, 27syld 42 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  -> 
( z  .<_  ( P 
.\/  Q )  ->  S  .<_  ( P  .\/  Q ) ) )
291, 28mtod 170 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( z  e.  A  /\  ( P 
.\/  z )  =  ( S  .\/  z
) ) )  ->  -.  z  .<_  ( P 
.\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   Atomscatm 28142   CvLatclc 28144   HLchlt 28229
This theorem is referenced by:  cdleme21d  29208  cdleme21e  29209
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-join 13954  df-lat 13996  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230
  Copyright terms: Public domain W3C validator