HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3i Unicode version

Theorem cdj3i 22851
Description: Two ways to express " A and  B are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3.1  |-  A  e.  SH
cdj3.2  |-  B  e.  SH
cdj3.3  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A E. w  e.  B  x  =  ( z  +h  w ) ) )
cdj3.4  |-  T  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) ) )
cdj3.5  |-  ( ph  <->  E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
cdj3.6  |-  ( ps  <->  E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
Assertion
Ref Expression
cdj3i  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  <-> 
( ( A  i^i  B )  =  0H  /\  ph 
/\  ps ) )
Distinct variable groups:    x, y,
z, w, v, u, A    x, B, y, z, w, v, u   
v, S, u    v, T, u
Allowed substitution hints:    ph( x, y, z, w, v, u)    ps( x, y, z, w, v, u)    S( x, y, z, w)    T( x, y, z, w)

Proof of Theorem cdj3i
StepHypRef Expression
1 cdj3.1 . . . 4  |-  A  e.  SH
2 cdj3.2 . . . 4  |-  B  e.  SH
31, 2cdj3lem1 22844 . . 3  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  ( A  i^i  B )  =  0H )
4 cdj3.3 . . . . 5  |-  S  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ z  e.  A E. w  e.  B  x  =  ( z  +h  w ) ) )
51, 2, 4cdj3lem2b 22847 . . . 4  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
6 cdj3.5 . . . 4  |-  ( ph  <->  E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
75, 6sylibr 205 . . 3  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  ph )
8 cdj3.4 . . . . 5  |-  T  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) ) )
91, 2, 8cdj3lem3b 22850 . . . 4  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
10 cdj3.6 . . . 4  |-  ( ps  <->  E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
119, 10sylibr 205 . . 3  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  ps )
123, 7, 113jca 1137 . 2  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  ( ( A  i^i  B )  =  0H  /\  ph  /\  ps ) )
13 breq2 3924 . . . . . . . . 9  |-  ( v  =  f  ->  (
0  <  v  <->  0  <  f ) )
14 oveq1 5717 . . . . . . . . . . 11  |-  ( v  =  f  ->  (
v  x.  ( normh `  u ) )  =  ( f  x.  ( normh `  u ) ) )
1514breq2d 3932 . . . . . . . . . 10  |-  ( v  =  f  ->  (
( normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) )  <-> 
( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) ) )
1615ralbidv 2527 . . . . . . . . 9  |-  ( v  =  f  ->  ( A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) )  <->  A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) ) )
1713, 16anbi12d 694 . . . . . . . 8  |-  ( v  =  f  ->  (
( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  ( 0  < 
f  /\  A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
) ) ) )
1817cbvrexv 2709 . . . . . . 7  |-  ( E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  E. f  e.  RR  ( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) ) )
196, 18bitri 242 . . . . . 6  |-  ( ph  <->  E. f  e.  RR  (
0  <  f  /\  A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) ) )
20 breq2 3924 . . . . . . . . 9  |-  ( v  =  g  ->  (
0  <  v  <->  0  <  g ) )
21 oveq1 5717 . . . . . . . . . . 11  |-  ( v  =  g  ->  (
v  x.  ( normh `  u ) )  =  ( g  x.  ( normh `  u ) ) )
2221breq2d 3932 . . . . . . . . . 10  |-  ( v  =  g  ->  (
( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) )  <-> 
( normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) ) ) )
2322ralbidv 2527 . . . . . . . . 9  |-  ( v  =  g  ->  ( A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) )  <->  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) ) ) )
2420, 23anbi12d 694 . . . . . . . 8  |-  ( v  =  g  ->  (
( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  ( 0  < 
g  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) ) ) )
2524cbvrexv 2709 . . . . . . 7  |-  ( E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  E. g  e.  RR  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) ) ) )
2610, 25bitri 242 . . . . . 6  |-  ( ps  <->  E. g  e.  RR  (
0  <  g  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) ) ) )
2719, 26anbi12i 681 . . . . 5  |-  ( (
ph  /\  ps )  <->  ( E. f  e.  RR  ( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  E. g  e.  RR  ( 0  < 
g  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) ) ) )
28 reeanv 2669 . . . . 5  |-  ( E. f  e.  RR  E. g  e.  RR  (
( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
g  x.  ( normh `  u ) ) ) )  <->  ( E. f  e.  RR  ( 0  < 
f  /\  A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
) )  /\  E. g  e.  RR  (
0  <  g  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) ) ) ) )
2927, 28bitr4i 245 . . . 4  |-  ( (
ph  /\  ps )  <->  E. f  e.  RR  E. g  e.  RR  (
( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
g  x.  ( normh `  u ) ) ) ) )
30 an4 800 . . . . . 6  |-  ( ( ( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
g  x.  ( normh `  u ) ) ) )  <->  ( ( 0  <  f  /\  0  <  g )  /\  ( A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) )  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) ) ) )
31 addgt0 9140 . . . . . . . . 9  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( 0  < 
f  /\  0  <  g ) )  ->  0  <  ( f  +  g ) )
3231ex 425 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( ( 0  < 
f  /\  0  <  g )  ->  0  <  ( f  +  g ) ) )
3332adantl 454 . . . . . . 7  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( (
0  <  f  /\  0  <  g )  -> 
0  <  ( f  +  g ) ) )
341, 2shsvai 21773 . . . . . . . . . . 11  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( t  +h  h
)  e.  ( A  +H  B ) )
35 fveq2 5377 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  +h  h )  ->  ( S `  u )  =  ( S `  ( t  +h  h
) ) )
3635fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  +h  h )  ->  ( normh `  ( S `  u ) )  =  ( normh `  ( S `  ( t  +h  h
) ) ) )
37 fveq2 5377 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  +h  h )  ->  ( normh `  u )  =  ( normh `  ( t  +h  h ) ) )
3837oveq2d 5726 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  +h  h )  ->  (
f  x.  ( normh `  u ) )  =  ( f  x.  ( normh `  ( t  +h  h ) ) ) )
3936, 38breq12d 3933 . . . . . . . . . . . . 13  |-  ( u  =  ( t  +h  h )  ->  (
( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) )  <-> 
( normh `  ( S `  ( t  +h  h
) ) )  <_ 
( f  x.  ( normh `  ( t  +h  h ) ) ) ) )
4039rcla4v 2817 . . . . . . . . . . . 12  |-  ( ( t  +h  h )  e.  ( A  +H  B )  ->  ( A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) )  ->  ( normh `  ( S `  ( t  +h  h ) ) )  <_  ( f  x.  ( normh `  ( t  +h  h ) ) ) ) )
41 fveq2 5377 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  +h  h )  ->  ( T `  u )  =  ( T `  ( t  +h  h
) ) )
4241fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  +h  h )  ->  ( normh `  ( T `  u ) )  =  ( normh `  ( T `  ( t  +h  h
) ) ) )
4337oveq2d 5726 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  +h  h )  ->  (
g  x.  ( normh `  u ) )  =  ( g  x.  ( normh `  ( t  +h  h ) ) ) )
4442, 43breq12d 3933 . . . . . . . . . . . . 13  |-  ( u  =  ( t  +h  h )  ->  (
( normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) )  <-> 
( normh `  ( T `  ( t  +h  h
) ) )  <_ 
( g  x.  ( normh `  ( t  +h  h ) ) ) ) )
4544rcla4v 2817 . . . . . . . . . . . 12  |-  ( ( t  +h  h )  e.  ( A  +H  B )  ->  ( A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( g  x.  ( normh `  u ) )  ->  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) )
4640, 45anim12d 548 . . . . . . . . . . 11  |-  ( ( t  +h  h )  e.  ( A  +H  B )  ->  (
( A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
)  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) )  ->  (
( normh `  ( S `  ( t  +h  h
) ) )  <_ 
( f  x.  ( normh `  ( t  +h  h ) ) )  /\  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
4734, 46syl 17 . . . . . . . . . 10  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( ( A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
)  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) )  ->  (
( normh `  ( S `  ( t  +h  h
) ) )  <_ 
( f  x.  ( normh `  ( t  +h  h ) ) )  /\  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
4847adantl 454 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
)  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) )  ->  (
( normh `  ( S `  ( t  +h  h
) ) )  <_ 
( f  x.  ( normh `  ( t  +h  h ) ) )  /\  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
491sheli 21623 . . . . . . . . . . . . . . 15  |-  ( t  e.  A  ->  t  e.  ~H )
50 normcl 21534 . . . . . . . . . . . . . . 15  |-  ( t  e.  ~H  ->  ( normh `  t )  e.  RR )
5149, 50syl 17 . . . . . . . . . . . . . 14  |-  ( t  e.  A  ->  ( normh `  t )  e.  RR )
522sheli 21623 . . . . . . . . . . . . . . 15  |-  ( h  e.  B  ->  h  e.  ~H )
53 normcl 21534 . . . . . . . . . . . . . . 15  |-  ( h  e.  ~H  ->  ( normh `  h )  e.  RR )
5452, 53syl 17 . . . . . . . . . . . . . 14  |-  ( h  e.  B  ->  ( normh `  h )  e.  RR )
5551, 54anim12i 551 . . . . . . . . . . . . 13  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( ( normh `  t
)  e.  RR  /\  ( normh `  h )  e.  RR ) )
5655adantl 454 . . . . . . . . . . . 12  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( normh `  t
)  e.  RR  /\  ( normh `  h )  e.  RR ) )
57 hvaddcl 21422 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ~H  /\  h  e.  ~H )  ->  ( t  +h  h
)  e.  ~H )
5849, 52, 57syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( t  +h  h
)  e.  ~H )
59 normcl 21534 . . . . . . . . . . . . . . 15  |-  ( ( t  +h  h )  e.  ~H  ->  ( normh `  ( t  +h  h ) )  e.  RR )
6058, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( normh `  ( t  +h  h ) )  e.  RR )
61 remulcl 8702 . . . . . . . . . . . . . 14  |-  ( ( f  e.  RR  /\  ( normh `  ( t  +h  h ) )  e.  RR )  ->  (
f  x.  ( normh `  ( t  +h  h
) ) )  e.  RR )
6260, 61sylan2 462 . . . . . . . . . . . . 13  |-  ( ( f  e.  RR  /\  ( t  e.  A  /\  h  e.  B
) )  ->  (
f  x.  ( normh `  ( t  +h  h
) ) )  e.  RR )
6362adantlr 698 . . . . . . . . . . . 12  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( f  x.  ( normh `  ( t  +h  h ) ) )  e.  RR )
64 remulcl 8702 . . . . . . . . . . . . . 14  |-  ( ( g  e.  RR  /\  ( normh `  ( t  +h  h ) )  e.  RR )  ->  (
g  x.  ( normh `  ( t  +h  h
) ) )  e.  RR )
6560, 64sylan2 462 . . . . . . . . . . . . 13  |-  ( ( g  e.  RR  /\  ( t  e.  A  /\  h  e.  B
) )  ->  (
g  x.  ( normh `  ( t  +h  h
) ) )  e.  RR )
6665adantll 697 . . . . . . . . . . . 12  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( g  x.  ( normh `  ( t  +h  h ) ) )  e.  RR )
67 le2add 9136 . . . . . . . . . . . 12  |-  ( ( ( ( normh `  t
)  e.  RR  /\  ( normh `  h )  e.  RR )  /\  (
( f  x.  ( normh `  ( t  +h  h ) ) )  e.  RR  /\  (
g  x.  ( normh `  ( t  +h  h
) ) )  e.  RR ) )  -> 
( ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) )  ->  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  x.  ( normh `  ( t  +h  h
) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
6856, 63, 66, 67syl12anc 1185 . . . . . . . . . . 11  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) )  ->  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  x.  ( normh `  ( t  +h  h
) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
6968adantll 697 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) )  ->  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  x.  ( normh `  ( t  +h  h
) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
701, 2, 4cdj3lem2 22845 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( S `  (
t  +h  h ) )  =  t )
7170fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( normh `  ( S `  ( t  +h  h
) ) )  =  ( normh `  t )
)
7271breq1d 3930 . . . . . . . . . . . . . 14  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( ( normh `  ( S `  ( t  +h  h ) ) )  <_  ( f  x.  ( normh `  ( t  +h  h ) ) )  <-> 
( normh `  t )  <_  ( f  x.  ( normh `  ( t  +h  h ) ) ) ) )
731, 2, 8cdj3lem3 22848 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( T `  (
t  +h  h ) )  =  h )
7473fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( normh `  ( T `  ( t  +h  h
) ) )  =  ( normh `  h )
)
7574breq1d 3930 . . . . . . . . . . . . . 14  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) )  <-> 
( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) )
7672, 75anbi12d 694 . . . . . . . . . . . . 13  |-  ( ( t  e.  A  /\  h  e.  B  /\  ( A  i^i  B )  =  0H )  -> 
( ( ( normh `  ( S `  (
t  +h  h ) ) )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  ( T `  ( t  +h  h
) ) )  <_ 
( g  x.  ( normh `  ( t  +h  h ) ) ) )  <->  ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
77763expa 1156 . . . . . . . . . . . 12  |-  ( ( ( t  e.  A  /\  h  e.  B
)  /\  ( A  i^i  B )  =  0H )  ->  ( (
( normh `  ( S `  ( t  +h  h
) ) )  <_ 
( f  x.  ( normh `  ( t  +h  h ) ) )  /\  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) )  <->  ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
7877ancoms 441 . . . . . . . . . . 11  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( t  e.  A  /\  h  e.  B
) )  ->  (
( ( normh `  ( S `  ( t  +h  h ) ) )  <_  ( f  x.  ( normh `  ( t  +h  h ) ) )  /\  ( normh `  ( T `  ( t  +h  h ) ) )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) )  <->  ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
7978adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  ( S `  (
t  +h  h ) ) )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  ( T `  ( t  +h  h
) ) )  <_ 
( g  x.  ( normh `  ( t  +h  h ) ) ) )  <->  ( ( normh `  t )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  h )  <_  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
80 recn 8707 . . . . . . . . . . . . . 14  |-  ( f  e.  RR  ->  f  e.  CC )
81 recn 8707 . . . . . . . . . . . . . 14  |-  ( g  e.  RR  ->  g  e.  CC )
8260recnd 8741 . . . . . . . . . . . . . 14  |-  ( ( t  e.  A  /\  h  e.  B )  ->  ( normh `  ( t  +h  h ) )  e.  CC )
83 adddir 8710 . . . . . . . . . . . . . 14  |-  ( ( f  e.  CC  /\  g  e.  CC  /\  ( normh `  ( t  +h  h ) )  e.  CC )  ->  (
( f  +  g )  x.  ( normh `  ( t  +h  h
) ) )  =  ( ( f  x.  ( normh `  ( t  +h  h ) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) )
8480, 81, 82, 83syl3an 1229 . . . . . . . . . . . . 13  |-  ( ( f  e.  RR  /\  g  e.  RR  /\  (
t  e.  A  /\  h  e.  B )
)  ->  ( (
f  +  g )  x.  ( normh `  (
t  +h  h ) ) )  =  ( ( f  x.  ( normh `  ( t  +h  h ) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) )
85843expa 1156 . . . . . . . . . . . 12  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) )  =  ( ( f  x.  ( normh `  (
t  +h  h ) ) )  +  ( g  x.  ( normh `  ( t  +h  h
) ) ) ) )
8685breq2d 3932 . . . . . . . . . . 11  |-  ( ( ( f  e.  RR  /\  g  e.  RR )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  t )  +  (
normh `  h ) )  <_  ( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( ( f  x.  ( normh `  ( t  +h  h ) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
8786adantll 697 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  t )  +  (
normh `  h ) )  <_  ( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( ( f  x.  ( normh `  ( t  +h  h ) ) )  +  ( g  x.  ( normh `  ( t  +h  h ) ) ) ) ) )
8869, 79, 873imtr4d 261 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( ( normh `  ( S `  (
t  +h  h ) ) )  <_  (
f  x.  ( normh `  ( t  +h  h
) ) )  /\  ( normh `  ( T `  ( t  +h  h
) ) )  <_ 
( g  x.  ( normh `  ( t  +h  h ) ) ) )  ->  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  +  g )  x.  ( normh `  (
t  +h  h ) ) ) ) )
8948, 88syld 42 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  /\  ( t  e.  A  /\  h  e.  B ) )  -> 
( ( A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
)  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) )  ->  (
( normh `  t )  +  ( normh `  h
) )  <_  (
( f  +  g )  x.  ( normh `  ( t  +h  h
) ) ) ) )
9089ralrimdvva 2600 . . . . . . 7  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( ( A. u  e.  ( A  +H  B ) (
normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) )  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) )  ->  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  +  g )  x.  ( normh `  (
t  +h  h ) ) ) ) )
91 readdcl 8700 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  +  g )  e.  RR )
92 breq2 3924 . . . . . . . . . . . 12  |-  ( v  =  ( f  +  g )  ->  (
0  <  v  <->  0  <  ( f  +  g ) ) )
93 fveq2 5377 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  ( normh `  x )  =  ( normh `  t )
)
9493oveq1d 5725 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
( normh `  x )  +  ( normh `  y
) )  =  ( ( normh `  t )  +  ( normh `  y
) ) )
95 oveq1 5717 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
x  +h  y )  =  ( t  +h  y ) )
9695fveq2d 5381 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  ( normh `  ( x  +h  y ) )  =  ( normh `  ( t  +h  y ) ) )
9796oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
v  x.  ( normh `  ( x  +h  y
) ) )  =  ( v  x.  ( normh `  ( t  +h  y ) ) ) )
9894, 97breq12d 3933 . . . . . . . . . . . . . 14  |-  ( x  =  t  ->  (
( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( t  +h  y ) ) ) ) )
99 fveq2 5377 . . . . . . . . . . . . . . . 16  |-  ( y  =  h  ->  ( normh `  y )  =  ( normh `  h )
)
10099oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( y  =  h  ->  (
( normh `  t )  +  ( normh `  y
) )  =  ( ( normh `  t )  +  ( normh `  h
) ) )
101 oveq2 5718 . . . . . . . . . . . . . . . . 17  |-  ( y  =  h  ->  (
t  +h  y )  =  ( t  +h  h ) )
102101fveq2d 5381 . . . . . . . . . . . . . . . 16  |-  ( y  =  h  ->  ( normh `  ( t  +h  y ) )  =  ( normh `  ( t  +h  h ) ) )
103102oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( y  =  h  ->  (
v  x.  ( normh `  ( t  +h  y
) ) )  =  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
104100, 103breq12d 3933 . . . . . . . . . . . . . 14  |-  ( y  =  h  ->  (
( ( normh `  t
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( t  +h  y ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( t  +h  h ) ) ) ) )
10598, 104cbvral2v 2711 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) )  <->  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
106 oveq1 5717 . . . . . . . . . . . . . . 15  |-  ( v  =  ( f  +  g )  ->  (
v  x.  ( normh `  ( t  +h  h
) ) )  =  ( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) )
107106breq2d 3932 . . . . . . . . . . . . . 14  |-  ( v  =  ( f  +  g )  ->  (
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( t  +h  h ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) ) )
1081072ralbidv 2547 . . . . . . . . . . . . 13  |-  ( v  =  ( f  +  g )  ->  ( A. t  e.  A  A. h  e.  B  ( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( t  +h  h ) ) )  <->  A. t  e.  A  A. h  e.  B  ( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) ) )
109105, 108syl5bb 250 . . . . . . . . . . . 12  |-  ( v  =  ( f  +  g )  ->  ( A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) )  <->  A. t  e.  A  A. h  e.  B  ( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) ) )
11092, 109anbi12d 694 . . . . . . . . . . 11  |-  ( v  =  ( f  +  g )  ->  (
( 0  <  v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) )  <->  ( 0  < 
( f  +  g )  /\  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  +  g )  x.  ( normh `  (
t  +h  h ) ) ) ) ) )
111110rcla4ev 2821 . . . . . . . . . 10  |-  ( ( ( f  +  g )  e.  RR  /\  ( 0  <  (
f  +  g )  /\  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  (
normh `  h ) )  <_  ( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) ) )  ->  E. v  e.  RR  ( 0  < 
v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) ) )
112111ex 425 . . . . . . . . 9  |-  ( ( f  +  g )  e.  RR  ->  (
( 0  <  (
f  +  g )  /\  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  (
normh `  h ) )  <_  ( ( f  +  g )  x.  ( normh `  ( t  +h  h ) ) ) )  ->  E. v  e.  RR  ( 0  < 
v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
11391, 112syl 17 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( ( 0  < 
( f  +  g )  /\  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( (
f  +  g )  x.  ( normh `  (
t  +h  h ) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
114113adantl 454 . . . . . . 7  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( (
0  <  ( f  +  g )  /\  A. t  e.  A  A. h  e.  B  (
( normh `  t )  +  ( normh `  h
) )  <_  (
( f  +  g )  x.  ( normh `  ( t  +h  h
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
11533, 90, 114syl2and 471 . . . . . 6  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( (
( 0  <  f  /\  0  <  g )  /\  ( A. u  e.  ( A  +H  B
) ( normh `  ( S `  u )
)  <_  ( f  x.  ( normh `  u )
)  /\  A. u  e.  ( A  +H  B
) ( normh `  ( T `  u )
)  <_  ( g  x.  ( normh `  u )
) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
11630, 115syl5bi 210 . . . . 5  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( (
( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
g  x.  ( normh `  u ) ) ) )  ->  E. v  e.  RR  ( 0  < 
v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
117116rexlimdvva 2636 . . . 4  |-  ( ( A  i^i  B )  =  0H  ->  ( E. f  e.  RR  E. g  e.  RR  (
( 0  <  f  /\  A. u  e.  ( A  +H  B ) ( normh `  ( S `  u ) )  <_ 
( f  x.  ( normh `  u ) ) )  /\  ( 0  <  g  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
g  x.  ( normh `  u ) ) ) )  ->  E. v  e.  RR  ( 0  < 
v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
11829, 117syl5bi 210 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  (
( ph  /\  ps )  ->  E. v  e.  RR  ( 0  <  v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) ) )
1191183impib 1154 . 2  |-  ( ( ( A  i^i  B
)  =  0H  /\  ph 
/\  ps )  ->  E. v  e.  RR  ( 0  < 
v  /\  A. x  e.  A  A. y  e.  B  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) ) )
12012, 119impbii 182 1  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  <-> 
( ( A  i^i  B )  =  0H  /\  ph 
/\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510    i^i cin 3077   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   iota_crio 6181   CCcc 8615   RRcr 8616   0cc0 8617    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748   ~Hchil 21329    +h cva 21330   normhcno 21333   SHcsh 21338    +H cph 21341   0Hc0h 21345
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-grpo 20688  df-ablo 20779  df-hnorm 21378  df-hvsub 21381  df-sh 21616  df-ch0 21662  df-shs 21717
  Copyright terms: Public domain W3C validator