MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Unicode version

Theorem caucvg 12028
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caucvg.2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
caucvg.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
caucvg.4  |-  ( ph  ->  F  e.  V )
Assertion
Ref Expression
caucvg  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caucvg
StepHypRef Expression
1 fveq2 5377 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
21cbvmptv 4008 . . . . 5  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( n  e.  Z  |->  ( F `  n ) )
3 caucvg.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
4 uzssz 10126 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3129 . . . . . . . . 9  |-  Z  C_  ZZ
6 zssre 9910 . . . . . . . . 9  |-  ZZ  C_  RR
75, 6sstri 3109 . . . . . . . 8  |-  Z  C_  RR
87a1i 12 . . . . . . 7  |-  ( ph  ->  Z  C_  RR )
9 caucvg.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
102eqcomi 2257 . . . . . . . 8  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( k  e.  Z  |->  ( F `  k ) )
119, 10fmptd 5536 . . . . . . 7  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) ) : Z --> CC )
12 1rp 10237 . . . . . . . . . . 11  |-  1  e.  RR+
13 ne0i 3368 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1412, 13ax-mp 10 . . . . . . . . . 10  |-  RR+  =/=  (/)
15 caucvg.3 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
16 r19.2z 3449 . . . . . . . . . 10  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
1714, 15, 16sylancr 647 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
18 eluzel2 10114 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1918, 3eleq2s 2345 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  M  e.  ZZ )
2019a1d 24 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  M  e.  ZZ ) )
2120rexlimiv 2623 . . . . . . . . . 10  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  M  e.  ZZ )
2221rexlimivw 2625 . . . . . . . . 9  |-  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  M  e.  ZZ )
2317, 22syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
243uzsup 10845 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
265sseli 3099 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  j  e.  ZZ )
275sseli 3099 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  k  e.  ZZ )
28 eluz 10120 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
2926, 27, 28syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
3029biimprd 216 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
31 fveq2 5377 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
32 eqid 2253 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
33 fvex 5391 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 n )  e. 
_V
3431, 32, 33fvmpt3i 5457 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  k
)  =  ( F `
 k ) )
35 fveq2 5377 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
3635, 32, 33fvmpt3i 5457 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  j
)  =  ( F `
 j ) )
3734, 36oveqan12rd 5730 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) )  =  ( ( F `  k )  -  ( F `  j )
) )
3837fveq2d 5381 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  =  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3938breq1d 3930 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4039biimprd 216 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  -> 
( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4130, 40imim12d 70 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4241ex 425 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4342com23 74 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( k  e.  Z  ->  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4443ralimdv2 2585 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4544reximia 2610 . . . . . . . . 9  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4645ralimi 2580 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) )
4715, 46syl 17 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  (
j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `  n
) ) `  k
)  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x
) )
488, 11, 25, 47caucvgr 12025 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  e.  dom  ~~> r  )
4911, 25rlimdm 11902 . . . . . 6  |-  ( ph  ->  ( ( n  e.  Z  |->  ( F `  n ) )  e. 
dom 
~~> r  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) ) )
5048, 49mpbid 203 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
512, 50syl5eqbr 3953 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
52 eqid 2253 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
539, 52fmptd 5536 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
543, 23, 53rlimclim 11897 . . . 4  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) )  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) ) )
5551, 54mpbid 203 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
56 caucvg.4 . . . 4  |-  ( ph  ->  F  e.  V )
573, 52climmpt 11922 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5823, 56, 57syl2anc 645 . . 3  |-  ( ph  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5955, 58mpbird 225 . 2  |-  ( ph  ->  F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
60 climrel 11843 . . 3  |-  Rel  ~~>
6160releldmi 4822 . 2  |-  ( F  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) )  ->  F  e.  dom  ~~>  )
6259, 61syl 17 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   (/)c0 3362   class class class wbr 3920    e. cmpt 3974   dom cdm 4580   ` cfv 4592  (class class class)co 5710   supcsup 7077   CCcc 8615   RRcr 8616   1c1 8618    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   abscabs 11596    ~~> cli 11835    ~~> r crli 11836
This theorem is referenced by:  caucvgb  12029  cvgcmpce  12153  ulmcau  19604  dchrisumlem3  20472  rrncmslem  25722
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-fl 10803  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840
  Copyright terms: Public domain W3C validator