Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof Unicode version

Theorem broutsideof 23918
 Description: Binary relationship form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof OutsideOf

Proof of Theorem broutsideof
StepHypRef Expression
1 df-outsideof 23917 . . 3 OutsideOf
21breqi 3926 . 2 OutsideOf
3 brdif 3968 . 2
42, 3bitri 242 1 OutsideOf
 Colors of variables: wff set class Syntax hints:   wn 5   wb 178   wa 360   cdif 3075  cop 3547   class class class wbr 3920   cbtwn 23691   ccolin 23834  OutsideOfcoutsideof 23916 This theorem is referenced by:  broutsideof2  23919  outsideofrflx  23924  outsidele  23929  outsideofcol  23930 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-dif 3081  df-br 3921  df-outsideof 23917
 Copyright terms: Public domain W3C validator