Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabg Unicode version

Theorem brabg 4177
 Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1
opelopabg.2
brabg.5
Assertion
Ref Expression
brabg
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)   (,)   (,)

Proof of Theorem brabg
StepHypRef Expression
1 opelopabg.1 . . 3
2 opelopabg.2 . . 3
31, 2sylan9bb 683 . 2
4 brabg.5 . 2
53, 4brabga 4172 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360   wceq 1619   wcel 1621   class class class wbr 3920  copab 3973 This theorem is referenced by:  brab  4180  ideqg  4742  opelcnvg  4768  f1owe  5702  brrpssg  6131  bren  6757  brdomg  6758  brwdom  7165  ltprord  8534  shftfib  11444  efgrelexlema  14893  cmbr  22011  leopg  22532  cvbr  22692  mdbr  22704  dmdbr  22709  soseq  23422  sltval  23469  axcontlem5  23770  isfne  25434  isref  25445  brabg2  25532  isriscg  25781  lcvbr  27900 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975
 Copyright terms: Public domain W3C validator