Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bezoutr Unicode version

Theorem bezoutr 26238
Description: Partial converse to bezout 12595. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )

Proof of Theorem bezoutr
StepHypRef Expression
1 gcdcl 12570 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
21nn0zd 9994 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
32adantr 453 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
4 simpll 733 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  A  e.  ZZ )
5 simprl 735 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  X  e.  ZZ )
64, 5zmulcld 10002 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  x.  X
)  e.  ZZ )
7 simplr 734 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  B  e.  ZZ )
8 simprr 736 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  Y  e.  ZZ )
97, 8zmulcld 10002 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( B  x.  Y
)  e.  ZZ )
10 gcddvds 12568 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1110adantr 453 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1211simpld 447 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  A )
13 dvdsmultr1 12437 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  ->  ( A  gcd  B ) 
||  ( A  x.  X ) ) )
1413imp 420 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  /\  ( A  gcd  B )  ||  A )  ->  ( A  gcd  B )  ||  ( A  x.  X
) )
153, 4, 5, 12, 14syl31anc 1190 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( A  x.  X ) )
1611simprd 451 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  B )
17 dvdsmultr1 12437 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  ->  ( A  gcd  B ) 
||  ( B  x.  Y ) ) )
1817imp 420 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  ||  ( B  x.  Y
) )
193, 7, 8, 16, 18syl31anc 1190 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( B  x.  Y ) )
20 dvds2add 12434 . . 3  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  ->  ( ( ( A  gcd  B ) 
||  ( A  x.  X )  /\  ( A  gcd  B )  ||  ( B  x.  Y
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) ) )
2120imp 420 . 2  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  /\  ( ( A  gcd  B )  ||  ( A  x.  X
)  /\  ( A  gcd  B )  ||  ( B  x.  Y )
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
223, 6, 9, 15, 19, 21syl32anc 1195 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    e. wcel 1621   class class class wbr 3920  (class class class)co 5710    + caddc 8620    x. cmul 8622   ZZcz 9903    || cdivides 12405    gcd cgcd 12559
This theorem is referenced by:  bezoutr1  26239
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406  df-gcd 12560
  Copyright terms: Public domain W3C validator