MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval4 Unicode version

Theorem bcval4 11198
Description: Value of the binomial coefficient,  N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 10677 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  0  <_  K )
2 0re 8718 . . . . . . . . . 10  |-  0  e.  RR
3 elfzelz 10676 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
43zred 9996 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
5 lenlt 8781 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  K  <->  -.  K  <  0 ) )
62, 4, 5sylancr 647 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  (
0  <_  K  <->  -.  K  <  0 ) )
71, 6mpbid 203 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  -.  K  <  0 )
87adantl 454 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  K  <  0 )
9 elfzle2 10678 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
109adantl 454 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  K  <_  N
)
11 nn0re 9853 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  RR )
12 lenlt 8781 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <_  N  <->  -.  N  <  K ) )
134, 11, 12syl2anr 466 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1410, 13mpbid 203 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  N  <  K )
15 ioran 478 . . . . . . 7  |-  ( -.  ( K  <  0  \/  N  <  K )  <-> 
( -.  K  <  0  /\  -.  N  <  K ) )
168, 14, 15sylanbrc 648 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... N ) )  ->  -.  ( K  <  0  \/  N  < 
K ) )
1716ex 425 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  <  K ) ) )
1817adantr 453 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  ->  -.  ( K  <  0  \/  N  < 
K ) ) )
1918con2d 109 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  <  0  \/  N  < 
K )  ->  -.  K  e.  ( 0 ... N ) ) )
20193impia 1153 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  -.  K  e.  (
0 ... N ) )
21 bcval3 11197 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
2220, 21syld3an3 1232 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  -> 
( N  _C  K
)  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920  (class class class)co 5710   RRcr 8616   0cc0 8617    < clt 8747    <_ cle 8748   NN0cn0 9844   ZZcz 9903   ...cfz 10660    _C cbc 11193
This theorem is referenced by:  bcn1  11203  bcpasc  11211  hashf1  11272  0hashbc  12928  ram0  12943  basellem2  20151  bcmono  20348
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-i2m1 8685  ax-1ne0 8686  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-xr 8751  df-le 8753  df-neg 8920  df-n 9627  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-bc 11194
  Copyright terms: Public domain W3C validator