MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Unicode version

Theorem axrrecex 8780
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 8804. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A
Dummy variables  y 
z are mutually distinct and distinct from all other variables.

Proof of Theorem axrrecex
StepHypRef Expression
1 elreal 8748 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2550 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 242 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 neeq1 2455 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  =/=  0  <->  A  =/=  0 ) )
5 oveq1 5826 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2292 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76rexbidv 2565 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1  <->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
84, 7imbi12d 313 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 )  <-> 
( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) ) )
9 df-0 8739 . . . . . . 7  |-  0  =  <. 0R ,  0R >.
109eqeq2i 2294 . . . . . 6  |-  ( <.
y ,  0R >.  =  0  <->  <. y ,  0R >.  =  <. 0R ,  0R >. )
11 vex 2792 . . . . . . 7  |-  y  e. 
_V
1211eqresr 8754 . . . . . 6  |-  ( <.
y ,  0R >.  = 
<. 0R ,  0R >.  <->  y  =  0R )
1310, 12bitri 242 . . . . 5  |-  ( <.
y ,  0R >.  =  0  <->  y  =  0R )
1413necon3bii 2479 . . . 4  |-  ( <.
y ,  0R >.  =/=  0  <->  y  =/=  0R )
15 recexsr 8724 . . . . . 6  |-  ( ( y  e.  R.  /\  y  =/=  0R )  ->  E. z  e.  R.  ( y  .R  z
)  =  1R )
1615ex 425 . . . . 5  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. z  e.  R.  (
y  .R  z )  =  1R ) )
17 opelreal 8747 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1817anbi1i 678 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )
19 mulresr 8756 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2019eqeq1d 2292 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
21 df-1 8740 . . . . . . . . . . . . 13  |-  1  =  <. 1R ,  0R >.
2221eqeq2i 2294 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
23 ovex 5844 . . . . . . . . . . . . 13  |-  ( y  .R  z )  e. 
_V
2423eqresr 8754 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
2522, 24bitri 242 . . . . . . . . . . 11  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
2620, 25syl6bb 254 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
2726pm5.32da 624 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( z  e.  R.  /\  ( y  .R  z
)  =  1R )
) )
2818, 27syl5bb 250 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( y  .R  z )  =  1R ) ) )
29 oveq2 5827 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3029eqeq1d 2292 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3130rspcev 2885 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 )
3228, 31syl6bir 222 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3332exp3a 427 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
3433rexlimdv 2667 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3516, 34syld 42 . . . 4  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3614, 35syl5bi 210 . . 3  |-  ( y  e.  R.  ->  ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 ) )
373, 8, 36gencl 2817 . 2  |-  ( A  e.  RR  ->  ( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
3837imp 420 1  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   E.wex 1529    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   <.cop 3644  (class class class)co 5819   R.cnr 8484   0Rc0r 8485   1Rc1r 8486    .R cmr 8489   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-1p 8601  df-plp 8602  df-mp 8603  df-ltp 8604  df-plpr 8674  df-mpr 8675  df-enr 8676  df-nr 8677  df-plr 8678  df-mr 8679  df-ltr 8680  df-0r 8681  df-1r 8682  df-m1r 8683  df-c 8738  df-0 8739  df-1 8740  df-r 8742  df-mul 8744
  Copyright terms: Public domain W3C validator