MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Unicode version

Theorem axrrecex 8994
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 9018. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem axrrecex
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 8962 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2672 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 241 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 neeq1 2575 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  =/=  0  <->  A  =/=  0 ) )
5 oveq1 6047 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2412 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76rexbidv 2687 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1  <->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
84, 7imbi12d 312 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 )  <-> 
( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) ) )
9 df-0 8953 . . . . . . 7  |-  0  =  <. 0R ,  0R >.
109eqeq2i 2414 . . . . . 6  |-  ( <.
y ,  0R >.  =  0  <->  <. y ,  0R >.  =  <. 0R ,  0R >. )
11 vex 2919 . . . . . . 7  |-  y  e. 
_V
1211eqresr 8968 . . . . . 6  |-  ( <.
y ,  0R >.  = 
<. 0R ,  0R >.  <->  y  =  0R )
1310, 12bitri 241 . . . . 5  |-  ( <.
y ,  0R >.  =  0  <->  y  =  0R )
1413necon3bii 2599 . . . 4  |-  ( <.
y ,  0R >.  =/=  0  <->  y  =/=  0R )
15 recexsr 8938 . . . . . 6  |-  ( ( y  e.  R.  /\  y  =/=  0R )  ->  E. z  e.  R.  ( y  .R  z
)  =  1R )
1615ex 424 . . . . 5  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. z  e.  R.  (
y  .R  z )  =  1R ) )
17 opelreal 8961 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1817anbi1i 677 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )
19 mulresr 8970 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2019eqeq1d 2412 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
21 df-1 8954 . . . . . . . . . . . . 13  |-  1  =  <. 1R ,  0R >.
2221eqeq2i 2414 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
23 ovex 6065 . . . . . . . . . . . . 13  |-  ( y  .R  z )  e. 
_V
2423eqresr 8968 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
2522, 24bitri 241 . . . . . . . . . . 11  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
2620, 25syl6bb 253 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
2726pm5.32da 623 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( z  e.  R.  /\  ( y  .R  z
)  =  1R )
) )
2818, 27syl5bb 249 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( y  .R  z )  =  1R ) ) )
29 oveq2 6048 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3029eqeq1d 2412 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3130rspcev 3012 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 )
3228, 31syl6bir 221 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3332exp3a 426 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
3433rexlimdv 2789 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3516, 34syld 42 . . . 4  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3614, 35syl5bi 209 . . 3  |-  ( y  e.  R.  ->  ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 ) )
373, 8, 36gencl 2944 . 2  |-  ( A  e.  RR  ->  ( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
3837imp 419 1  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   <.cop 3777  (class class class)co 6040   R.cnr 8698   0Rc0r 8699   1Rc1r 8700    .R cmr 8703   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-1p 8815  df-plp 8816  df-mp 8817  df-ltp 8818  df-plpr 8888  df-mpr 8889  df-enr 8890  df-nr 8891  df-plr 8892  df-mr 8893  df-ltr 8894  df-0r 8895  df-1r 8896  df-m1r 8897  df-c 8952  df-0 8953  df-1 8954  df-r 8956  df-mul 8958
  Copyright terms: Public domain W3C validator