Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdim2 Unicode version

Theorem axlowdim2 23762
Description: The lower two dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.)
Assertion
Ref Expression
axlowdim2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Distinct variable group:    x, N, y, z

Proof of Theorem axlowdim2
StepHypRef Expression
1 0re 8718 . . 3  |-  0  e.  RR
21, 1axlowdimlem5 23748 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
3 1re 8717 . . 3  |-  1  e.  RR
43, 1axlowdimlem5 23748 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  1 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
51, 3axlowdimlem5 23748 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
6 eqid 2253 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
7 eqid 2253 . . . 4  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
8 eqid 2253 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
96, 7, 8axlowdimlem6 23749 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
10 opeq2 3697 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1110breq2d 3932 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
12 opeq1 3696 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1312breq2d 3932 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
14 breq1 3923 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
1511, 13, 143orbi123d 1256 . . . . 5  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
1615notbid 287 . . . 4  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
1716rcla4ev 2821 . . 3  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )  ->  E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
185, 9, 17syl2anc 645 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )
19 breq1 3923 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
x  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >. )
)
20 opeq2 3697 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  x >.  =  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
2120breq2d 3932 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  x >.  <->  y  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
22 opeq1 3696 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. x ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )
2322breq2d 3932 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. x ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) )
2419, 21, 233orbi123d 1256 . . . . 5  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2524notbid 287 . . . 4  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2625rexbidv 2528 . . 3  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  E. z  e.  ( EE
`  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
27 opeq1 3696 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. y ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. )
2827breq2d 3932 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. ) )
29 breq1 3923 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
30 opeq2 3697 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
3130breq2d 3932 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
3228, 29, 313orbi123d 1256 . . . . 5  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3332notbid 287 . . . 4  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
3433rexbidv 2528 . . 3  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3526, 34rcla42ev 2829 . 2  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  e.  ( EE `  N
)  /\  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
362, 4, 18, 35syl3anc 1187 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ w3o 938    = wceq 1619    e. wcel 1621   E.wrex 2510    u. cun 3076   {csn 3544   {cpr 3545   <.cop 3547   class class class wbr 3920    X. cxp 4578   ` cfv 4592  (class class class)co 5710   0cc0 8617   1c1 8618   2c2 9675   3c3 9676   ZZ>=cuz 10109   ...cfz 10660   EEcee 23690    Btwn cbtwn 23691
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-icc 10541  df-fz 10661  df-seq 10925  df-exp 10983  df-ee 23693  df-btwn 23694
  Copyright terms: Public domain W3C validator