Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6wK Unicode version

Theorem ax6wK 27919
Description: Weak version of ax-6 1534 from which we can prove any ax-6 1534 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes (see description for equidK 27889). (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
ax6wK.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ax6wK  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ax6wK
StepHypRef Expression
1 ax6wK.1 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21cbvalvK 27916 . . . 4  |-  ( A. x ph  <->  A. y ps )
32biimpri 199 . . 3  |-  ( A. y ps  ->  A. x ph )
43con3i 129 . 2  |-  ( -. 
A. x ph  ->  -. 
A. y ps )
5 ax-17 1628 . 2  |-  ( -. 
A. y ps  ->  A. x  -.  A. y ps )
62biimpi 188 . . . 4  |-  ( A. x ph  ->  A. y ps )
76con3i 129 . . 3  |-  ( -. 
A. y ps  ->  -. 
A. x ph )
87alimi 1546 . 2  |-  ( A. x  -.  A. y ps 
->  A. x  -.  A. x ph )
94, 5, 83syl 20 1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178   A.wal 1532
This theorem is referenced by:  hba1wK  27920  hbe1wK  27921  ax12o10lem5K  27942  ax12o10lem6K  27944  ax12o10lem7K  27946  ax12o10lem9K  27950
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-8 1623  ax-17 1628  ax-9v 1632
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator