Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6wK Unicode version

Theorem ax6wK 28166
 Description: Weak version of ax-6 1534 from which we can prove any ax-6 1534 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes (see description for equidK 28136). (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
ax6wK.1
Assertion
Ref Expression
ax6wK
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ax6wK
StepHypRef Expression
1 ax6wK.1 . . . . 5
21cbvalvK 28163 . . . 4
32biimpri 199 . . 3
43con3i 129 . 2
5 ax-17 1628 . 2
62biimpi 188 . . . 4
76con3i 129 . . 3
87alimi 1546 . 2
94, 5, 83syl 20 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178  wal 1532 This theorem is referenced by:  hba1wK  28167  hbe1wK  28168  ax12o10lem5K  28189  ax12o10lem6K  28191  ax12o10lem7K  28193  ax12o10lem9K  28197 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-8 1623  ax-17 1628  ax-9v 1632 This theorem depends on definitions:  df-bi 179
 Copyright terms: Public domain W3C validator