MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11v2 Unicode version

Theorem ax11v2 1935
Description: Recovery of ax-11o 1940 from ax11v 1990. This proof uses ax-10 1678 and ax-11 1624. TODO: figure out if this is useful, or if it should be simplified or eliminated. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11v2.1  |-  ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )
Assertion
Ref Expression
ax11v2  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Distinct variable groups:    x, z    y, z    ph, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax11v2
StepHypRef Expression
1 a9e 1817 . 2  |-  E. z 
z  =  y
2 ax11v2.1 . . . . 5  |-  ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )
3 equequ2 1830 . . . . . . 7  |-  ( z  =  y  ->  (
x  =  z  <->  x  =  y ) )
43adantl 454 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  -> 
( x  =  z  <-> 
x  =  y ) )
5 dveeq2 1928 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
65imp 420 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  ->  A. x  z  =  y )
7 nfa1 1719 . . . . . . . . 9  |-  F/ x A. x  z  =  y
83imbi1d 310 . . . . . . . . . 10  |-  ( z  =  y  ->  (
( x  =  z  ->  ph )  <->  ( x  =  y  ->  ph )
) )
98a4s 1700 . . . . . . . . 9  |-  ( A. x  z  =  y  ->  ( ( x  =  z  ->  ph )  <->  ( x  =  y  ->  ph )
) )
107, 9albid 1713 . . . . . . . 8  |-  ( A. x  z  =  y  ->  ( A. x ( x  =  z  ->  ph )  <->  A. x ( x  =  y  ->  ph )
) )
116, 10syl 17 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  -> 
( A. x ( x  =  z  ->  ph )  <->  A. x ( x  =  y  ->  ph )
) )
1211imbi2d 309 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  -> 
( ( ph  ->  A. x ( x  =  z  ->  ph ) )  <-> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
134, 12imbi12d 313 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  -> 
( ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )  <->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
142, 13mpbii 204 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  z  =  y )  -> 
( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
1514ex 425 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
1615exlimdv 1932 . 2  |-  ( -. 
A. x  x  =  y  ->  ( E. z  z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) ) )
171, 16mpi 18 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619
This theorem is referenced by:  ax11a2  1937
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator