Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11v2 Unicode version

Theorem ax11v2 1935
 Description: Recovery of ax-11o 1940 from ax11v 1990. This proof uses ax-10 1678 and ax-11 1624. TODO: figure out if this is useful, or if it should be simplified or eliminated. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11v2.1
Assertion
Ref Expression
ax11v2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11v2
StepHypRef Expression
1 a9e 1817 . 2
2 ax11v2.1 . . . . 5
3 equequ2 1830 . . . . . . 7
43adantl 454 . . . . . 6
5 dveeq2 1928 . . . . . . . . 9
65imp 420 . . . . . . . 8
7 nfa1 1719 . . . . . . . . 9
83imbi1d 310 . . . . . . . . . 10
98a4s 1700 . . . . . . . . 9
107, 9albid 1713 . . . . . . . 8
116, 10syl 17 . . . . . . 7
1211imbi2d 309 . . . . . 6
134, 12imbi12d 313 . . . . 5
142, 13mpbii 204 . . . 4
1514ex 425 . . 3
1615exlimdv 1932 . 2
171, 16mpi 18 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178   wa 360  wal 1532  wex 1537   wceq 1619 This theorem is referenced by:  ax11a2  1937 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator