Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1939
 Description: Derivation of set.mm's original ax-11o 1940 from ax-10 1678 and the shorter ax-11 1624 that has replaced it. An open problem is whether this theorem can be proved without relying on ax-16 1926 or ax-17 1628 (given all of the original and new versions of ax-4 1692 through ax-15 2102). Another open problem is whether this theorem can be proved without relying on ax-12o 1664. Theorem ax11 1941 shows the reverse derivation of ax-11 1624 from ax-11o 1940. Normally, ax11o 1939 should be used rather than ax-11o 1940, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)
Assertion
Ref Expression
ax11o

Proof of Theorem ax11o
StepHypRef Expression
1 ax-11 1624 . 2
21ax11a2 1937 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6  wal 1532 This theorem is referenced by:  equs5  1943  ax11v  1990 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator