Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11a2 Unicode version

Theorem ax11a2 1937
 Description: Derive ax-11o 1940 from a hypothesis in the form of ax-11 1624. ax-10 1678 and ax-11 1624 are used by the proof, but not ax-10o 1835 or ax-11o 1940. TODO: figure out if this is useful, or if it should be simplified or eliminated. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1
Assertion
Ref Expression
ax11a2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1628 . . 3
2 ax11a2.1 . . 3
31, 2syl5 30 . 2
43ax11v2 1935 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6  wal 1532 This theorem is referenced by:  ax11o  1939 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator