Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11 Unicode version

Theorem ax11 1941
 Description: Rederivation of axiom ax-11 1624 from the orginal version, ax-11o 1940, and ax-10o 1835. The proof does not require ax-11 1624, ax-16 1926, or ax-17 1628. See theorem ax11o 1939 for the derivation of ax-11o 1940 from ax-11 1624. An open problem is whether we can prove this using ax-10 1678 instead of ax-10o 1835. This theorem should not be referenced in any proof. Instead, use ax-11 1624 above so that uses of ax-11 1624 can be more easily identified. (Contributed by NM, 22-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax11

Proof of Theorem ax11
StepHypRef Expression
1 biidd 230 . . . . 5
21dral1-o 1856 . . . 4
3 ax-1 7 . . . . 5
43alimi 1546 . . . 4
52, 4syl6bir 222 . . 3
65a1d 24 . 2
7 ax-4 1692 . . 3
8 ax-11o 1940 . . 3
97, 8syl7 65 . 2
106, 9pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6  wal 1532 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-12o 1664  ax-9 1684  ax-4 1692  ax-10o 1835  ax-11o 1940 This theorem depends on definitions:  df-bi 179  df-nf 1540
 Copyright terms: Public domain W3C validator