Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10o Unicode version

Theorem ax10o 1834
 Description: Show that ax-10o 1835 can be derived from ax-10 1678. An open problem is whether this theorem can be derived from ax-10 1678 and the others when ax-11 1624 is replaced with ax-11o 1940. See theorem ax10from10o 1836 for the rederivation of ax-10 1678 from ax10o 1834. Normally, ax10o 1834 should be used rather than ax-10o 1835, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)
Assertion
Ref Expression
ax10o

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1678 . 2
2 ax-11 1624 . . . 4
32equcoms 1825 . . 3
43a4s 1700 . 2
5 pm2.27 37 . . 3
65al2imi 1549 . 2
71, 4, 6sylsyld 54 1
 Colors of variables: wff set class Syntax hints:   wi 6  wal 1532 This theorem is referenced by:  hbae  1840  dvelimfALT  1853  dral1  1855  nd1  8089  nd2  8090  axpowndlem3  8101  a9e2eq  27016  a9e2eqVD  27373  2sb5ndVD  27376 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator