MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arch Unicode version

Theorem arch 9978
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Distinct variable group:    A, n

Proof of Theorem arch
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4042 . . 3  |-  ( y  =  A  ->  (
y  <  n  <->  A  <  n ) )
21rexbidv 2577 . 2  |-  ( y  =  A  ->  ( E. n  e.  NN  y  <  n  <->  E. n  e.  NN  A  <  n
) )
3 nnunb 9977 . . . 4  |-  -.  E. y  e.  RR  A. n  e.  NN  ( n  < 
y  \/  n  =  y )
4 ralnex 2566 . . . 4  |-  ( A. y  e.  RR  -.  A. n  e.  NN  (
n  <  y  \/  n  =  y )  <->  -. 
E. y  e.  RR  A. n  e.  NN  (
n  <  y  \/  n  =  y )
)
53, 4mpbir 200 . . 3  |-  A. y  e.  RR  -.  A. n  e.  NN  ( n  < 
y  \/  n  =  y )
6 rexnal 2567 . . . . 5  |-  ( E. n  e.  NN  -.  ( n  <  y  \/  n  =  y )  <->  -.  A. n  e.  NN  ( n  <  y  \/  n  =  y ) )
7 nnre 9769 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR )
8 axlttri 8910 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  n  e.  RR )  ->  ( y  <  n  <->  -.  ( y  =  n  \/  n  <  y
) ) )
97, 8sylan2 460 . . . . . . . 8  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( y  <  n  <->  -.  ( y  =  n  \/  n  <  y
) ) )
10 eqcom 2298 . . . . . . . . . . 11  |-  ( y  =  n  <->  n  =  y )
1110orbi1i 506 . . . . . . . . . 10  |-  ( ( y  =  n  \/  n  <  y )  <-> 
( n  =  y  \/  n  <  y
) )
12 orcom 376 . . . . . . . . . 10  |-  ( ( n  =  y  \/  n  <  y )  <-> 
( n  <  y  \/  n  =  y
) )
1311, 12bitri 240 . . . . . . . . 9  |-  ( ( y  =  n  \/  n  <  y )  <-> 
( n  <  y  \/  n  =  y
) )
1413notbii 287 . . . . . . . 8  |-  ( -.  ( y  =  n  \/  n  <  y
)  <->  -.  ( n  <  y  \/  n  =  y ) )
159, 14syl6bb 252 . . . . . . 7  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( y  <  n  <->  -.  ( n  <  y  \/  n  =  y
) ) )
1615biimprd 214 . . . . . 6  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( -.  ( n  <  y  \/  n  =  y )  -> 
y  <  n )
)
1716reximdva 2668 . . . . 5  |-  ( y  e.  RR  ->  ( E. n  e.  NN  -.  ( n  <  y  \/  n  =  y
)  ->  E. n  e.  NN  y  <  n
) )
186, 17syl5bir 209 . . . 4  |-  ( y  e.  RR  ->  ( -.  A. n  e.  NN  ( n  <  y  \/  n  =  y )  ->  E. n  e.  NN  y  <  n ) )
1918ralimia 2629 . . 3  |-  ( A. y  e.  RR  -.  A. n  e.  NN  (
n  <  y  \/  n  =  y )  ->  A. y  e.  RR  E. n  e.  NN  y  <  n )
205, 19ax-mp 8 . 2  |-  A. y  e.  RR  E. n  e.  NN  y  <  n
212, 20vtoclri 2871 1  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   class class class wbr 4039   RRcr 8752    < clt 8883   NNcn 9762
This theorem is referenced by:  nnrecl  9979  bndndx  9980  btwnz  10130  uzwo3  10327  zmin  10328  rpnnen1lem5  10362  harmonic  12333  alzdvds  12594  ovolicc2lem4  18895  volsup2  18976  ismbf3d  19025  mbfi1fseqlem6  19091  itg2seq  19113  itg2cnlem1  19132  ply1divex  19538  plydivex  19693  ubthlem1  21465  lnconi  22629  esumcst  23451  hbtlem5  27434  rfcnnnub  27809  stoweidlem14  27865  stoweidlem60  27911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763
  Copyright terms: Public domain W3C validator