MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 8946
Description:  0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 1re 8791 . 2  |-  1  e.  RR
2 ax-rnegex 8762 . 2  |-  ( 1  e.  RR  ->  E. c  e.  RR  ( 1  +  c )  =  0 )
3 ax-1ne0 8760 . . . . . 6  |-  1  =/=  0
4 oveq2 5786 . . . . . . . . . 10  |-  ( c  =  0  ->  (
1  +  c )  =  ( 1  +  0 ) )
54eqeq1d 2264 . . . . . . . . 9  |-  ( c  =  0  ->  (
( 1  +  c )  =  0  <->  (
1  +  0 )  =  0 ) )
65biimpcd 217 . . . . . . . 8  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
( 1  +  0 )  =  0 ) )
7 oveq2 5786 . . . . . . . . 9  |-  ( ( 1  +  0 )  =  0  ->  (
( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
8 ax-icn 8750 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
98, 8mulcli 8796 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  e.  CC
109, 9mulcli 8796 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC
11 ax-1cn 8749 . . . . . . . . . . . . 13  |-  1  e.  CC
12 0cn 8785 . . . . . . . . . . . . 13  |-  0  e.  CC
1310, 11, 12adddii 8801 . . . . . . . . . . . 12  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
1410mulid1i 8793 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  =  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )
15 mul01 8945 . . . . . . . . . . . . . . 15  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC  ->  ( (
( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0 )
1610, 15ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0
17 ax-i2m1 8759 . . . . . . . . . . . . . 14  |-  ( ( _i  x.  _i )  +  1 )  =  0
1816, 17eqtr4i 2279 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  ( ( _i  x.  _i )  +  1 )
1914, 18oveq12i 5790 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2013, 19eqtri 2276 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2120, 16eqeq12i 2269 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )  =  0 )
2210, 9, 11addassi 8799 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )
239mulid1i 8793 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  1 )  =  ( _i  x.  _i )
2423oveq2i 5789 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )
259, 9, 11adddii 8801 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1 ) )
2617oveq2i 5789 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( _i  x.  _i )  x.  0
)
27 mul01 8945 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i )  e.  CC  ->  (
( _i  x.  _i )  x.  0 )  =  0 )
289, 27ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  0 )  =  0
2926, 28eqtri 2276 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  0
3025, 29eqtr3i 2278 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  0
3124, 30eqtr3i 2278 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( _i  x.  _i ) )  =  0
3231oveq1i 5788 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( 0  +  1 )
3322, 32eqtr3i 2278 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1
) )  =  ( 0  +  1 )
34 00id 8941 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
3534eqcomi 2260 . . . . . . . . . . 11  |-  0  =  ( 0  +  0 )
3633, 35eqeq12i 2269 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )  =  0  <->  ( 0  +  1 )  =  ( 0  +  0 ) )
37 0re 8792 . . . . . . . . . . 11  |-  0  e.  RR
38 readdcan 8940 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  0  e.  RR  /\  0  e.  RR )  ->  (
( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 ) )
391, 37, 37, 38mp3an 1282 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 )
4021, 36, 393bitri 264 . . . . . . . . 9  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  1  =  0 )
417, 40sylib 190 . . . . . . . 8  |-  ( ( 1  +  0 )  =  0  ->  1  =  0 )
426, 41syl6 31 . . . . . . 7  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
1  =  0 ) )
4342necon3d 2457 . . . . . 6  |-  ( ( 1  +  c )  =  0  ->  (
1  =/=  0  -> 
c  =/=  0 ) )
443, 43mpi 18 . . . . 5  |-  ( ( 1  +  c )  =  0  ->  c  =/=  0 )
45 ax-rrecex 8763 . . . . 5  |-  ( ( c  e.  RR  /\  c  =/=  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
4644, 45sylan2 462 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
47 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  A  e.  CC )
48 simplrl 739 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  RR )
4948recnd 8815 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  CC )
5047, 49mulcld 8809 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  x.  x )  e.  CC )
51 simplll 737 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  RR )
5251recnd 8815 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  CC )
5312a1i 12 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  CC )
5450, 52, 53adddid 8813 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( ( A  x.  x )  x.  c )  +  ( ( A  x.  x )  x.  0 ) ) )
5511a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  CC )
5655, 52, 53addassd 8811 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 1  +  ( c  +  0 ) ) )
57 simpllr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  c )  =  0 )
5857oveq1d 5793 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 0  +  0 ) )
5956, 58eqtr3d 2290 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 0  +  0 ) )
6034, 59, 573eqtr4a 2314 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 1  +  c ) )
6137a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  RR )
6251, 61readdcld 8816 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  e.  RR )
631a1i 12 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  RR )
64 readdcan 8940 . . . . . . . . . . 11  |-  ( ( ( c  +  0 )  e.  RR  /\  c  e.  RR  /\  1  e.  RR )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6562, 51, 63, 64syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6660, 65mpbid 203 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  =  c )
6766oveq2d 5794 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( A  x.  x )  x.  c ) )
6854, 67eqtr3d 2290 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( ( A  x.  x )  x.  c ) )
69 mul31 8934 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
7047, 49, 52, 69syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
71 simplrr 740 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  x.  x )  =  1 )
7271oveq1d 5793 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( c  x.  x
)  x.  A )  =  ( 1  x.  A ) )
7347mulid2d 8807 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  x.  A )  =  A )
7470, 72, 733eqtrd 2292 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  A )
75 mul01 8945 . . . . . . . . 9  |-  ( ( A  x.  x )  e.  CC  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7650, 75syl 17 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7774, 76oveq12d 5796 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( A  + 
0 ) )
7868, 77, 743eqtr3d 2296 . . . . . 6  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  +  0 )  =  A )
7978exp42 597 . . . . 5  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( x  e.  RR  ->  ( (
c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) ) )
8079rexlimdv 2639 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( E. x  e.  RR  ( c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) )
8146, 80mpd 16 . . 3  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
8281rexlimiva 2635 . 2  |-  ( E. c  e.  RR  (
1  +  c )  =  0  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
831, 2, 82mp2b 11 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692   _ici 8693    + caddc 8694    x. cmul 8696
This theorem is referenced by:  cnegex  8947  addid2  8949  addcan2  8951  addid1i  8953  addid1d  8966  subid  9021  subid1  9022  shftval3  11522  reim0  11554  isercolllem3  12091  fsumcvg  12136  summolem2a  12139  ovolicc1  18823  relexpadd  23393  brbtwn2  23894  axsegconlem1  23906  ax5seglem4  23921  axeuclid  23952  axcontlem2  23954  axcontlem4  23956  stoweidlem11  27081  stoweidlem26  27096
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-po 4272  df-so 4273  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-ltxr 8826
  Copyright terms: Public domain W3C validator