MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1 Unicode version

Theorem addid1 8872
Description:  0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
StepHypRef Expression
1 1re 8717 . 2  |-  1  e.  RR
2 ax-rnegex 8688 . 2  |-  ( 1  e.  RR  ->  E. c  e.  RR  ( 1  +  c )  =  0 )
3 ax-1ne0 8686 . . . . . 6  |-  1  =/=  0
4 oveq2 5718 . . . . . . . . . 10  |-  ( c  =  0  ->  (
1  +  c )  =  ( 1  +  0 ) )
54eqeq1d 2261 . . . . . . . . 9  |-  ( c  =  0  ->  (
( 1  +  c )  =  0  <->  (
1  +  0 )  =  0 ) )
65biimpcd 217 . . . . . . . 8  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
( 1  +  0 )  =  0 ) )
7 oveq2 5718 . . . . . . . . 9  |-  ( ( 1  +  0 )  =  0  ->  (
( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
8 ax-icn 8676 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
98, 8mulcli 8722 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  e.  CC
109, 9mulcli 8722 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC
11 ax-1cn 8675 . . . . . . . . . . . . 13  |-  1  e.  CC
12 0cn 8711 . . . . . . . . . . . . 13  |-  0  e.  CC
1310, 11, 12adddii 8727 . . . . . . . . . . . 12  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
1410mulid1i 8719 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  =  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )
15 mul01 8871 . . . . . . . . . . . . . . 15  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC  ->  ( (
( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0 )
1610, 15ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0
17 ax-i2m1 8685 . . . . . . . . . . . . . 14  |-  ( ( _i  x.  _i )  +  1 )  =  0
1816, 17eqtr4i 2276 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  ( ( _i  x.  _i )  +  1 )
1914, 18oveq12i 5722 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2013, 19eqtri 2273 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2120, 16eqeq12i 2266 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )  =  0 )
2210, 9, 11addassi 8725 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )
239mulid1i 8719 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  1 )  =  ( _i  x.  _i )
2423oveq2i 5721 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )
259, 9, 11adddii 8727 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1 ) )
2617oveq2i 5721 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( _i  x.  _i )  x.  0
)
27 mul01 8871 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i )  e.  CC  ->  (
( _i  x.  _i )  x.  0 )  =  0 )
289, 27ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  0 )  =  0
2926, 28eqtri 2273 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  0
3025, 29eqtr3i 2275 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  0
3124, 30eqtr3i 2275 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( _i  x.  _i ) )  =  0
3231oveq1i 5720 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( 0  +  1 )
3322, 32eqtr3i 2275 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1
) )  =  ( 0  +  1 )
34 00id 8867 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
3534eqcomi 2257 . . . . . . . . . . 11  |-  0  =  ( 0  +  0 )
3633, 35eqeq12i 2266 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )  =  0  <->  ( 0  +  1 )  =  ( 0  +  0 ) )
37 0re 8718 . . . . . . . . . . 11  |-  0  e.  RR
38 readdcan 8866 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  0  e.  RR  /\  0  e.  RR )  ->  (
( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 ) )
391, 37, 37, 38mp3an 1282 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 )
4021, 36, 393bitri 264 . . . . . . . . 9  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  1  =  0 )
417, 40sylib 190 . . . . . . . 8  |-  ( ( 1  +  0 )  =  0  ->  1  =  0 )
426, 41syl6 31 . . . . . . 7  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
1  =  0 ) )
4342necon3d 2450 . . . . . 6  |-  ( ( 1  +  c )  =  0  ->  (
1  =/=  0  -> 
c  =/=  0 ) )
443, 43mpi 18 . . . . 5  |-  ( ( 1  +  c )  =  0  ->  c  =/=  0 )
45 ax-rrecex 8689 . . . . 5  |-  ( ( c  e.  RR  /\  c  =/=  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
4644, 45sylan2 462 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
47 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  A  e.  CC )
48 simplrl 739 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  RR )
4948recnd 8741 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  CC )
5047, 49mulcld 8735 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  x.  x )  e.  CC )
51 simplll 737 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  RR )
5251recnd 8741 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  CC )
5312a1i 12 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  CC )
5450, 52, 53adddid 8739 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( ( A  x.  x )  x.  c )  +  ( ( A  x.  x )  x.  0 ) ) )
5511a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  CC )
5655, 52, 53addassd 8737 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 1  +  ( c  +  0 ) ) )
57 simpllr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  c )  =  0 )
5857oveq1d 5725 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 0  +  0 ) )
5956, 58eqtr3d 2287 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 0  +  0 ) )
6034, 59, 573eqtr4a 2311 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 1  +  c ) )
6137a1i 12 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  RR )
6251, 61readdcld 8742 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  e.  RR )
631a1i 12 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  RR )
64 readdcan 8866 . . . . . . . . . . 11  |-  ( ( ( c  +  0 )  e.  RR  /\  c  e.  RR  /\  1  e.  RR )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6562, 51, 63, 64syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6660, 65mpbid 203 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  =  c )
6766oveq2d 5726 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( A  x.  x )  x.  c ) )
6854, 67eqtr3d 2287 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( ( A  x.  x )  x.  c ) )
69 mul31 8860 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
7047, 49, 52, 69syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
71 simplrr 740 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  x.  x )  =  1 )
7271oveq1d 5725 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( c  x.  x
)  x.  A )  =  ( 1  x.  A ) )
7347mulid2d 8733 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  x.  A )  =  A )
7470, 72, 733eqtrd 2289 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  A )
75 mul01 8871 . . . . . . . . 9  |-  ( ( A  x.  x )  e.  CC  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7650, 75syl 17 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7774, 76oveq12d 5728 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( A  + 
0 ) )
7868, 77, 743eqtr3d 2293 . . . . . 6  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  +  0 )  =  A )
7978exp42 597 . . . . 5  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( x  e.  RR  ->  ( (
c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) ) )
8079rexlimdv 2628 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( E. x  e.  RR  ( c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) )
8146, 80mpd 16 . . 3  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
8281rexlimiva 2624 . 2  |-  ( E. c  e.  RR  (
1  +  c )  =  0  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
831, 2, 82mp2b 11 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618   _ici 8619    + caddc 8620    x. cmul 8622
This theorem is referenced by:  cnegex  8873  addid2  8875  addcan2  8877  addid1i  8879  addid1d  8892  subid  8947  subid1  8948  shftval3  11448  reim0  11480  isercolllem3  12017  fsumcvg  12062  summolem2a  12065  ovolicc1  18707  relexpadd  23206  brbtwn2  23707  axsegconlem1  23719  ax5seglem4  23734  axeuclid  23765  axcontlem2  23767  axcontlem4  23769  stoweidlem11  26894  stoweidlem26  26909
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752
  Copyright terms: Public domain W3C validator