MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Unicode version

Theorem abvcxp 20596
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a  |-  A  =  (AbsVal `  R )
abvcxp.b  |-  B  =  ( Base `  R
)
abvcxp.f  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^ c  S ) )
Assertion
Ref Expression
abvcxp  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Distinct variable groups:    x, A    x, B    x, F    x, R    x, S
Allowed substitution hint:    G( x)

Proof of Theorem abvcxp
StepHypRef Expression
1 abvcxp.a . . 3  |-  A  =  (AbsVal `  R )
21a1i 12 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  A  =  (AbsVal `  R ) )
3 abvcxp.b . . 3  |-  B  =  ( Base `  R
)
43a1i 12 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  B  =  (
Base `  R )
)
5 eqidd 2254 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( +g  `  R
)  =  ( +g  `  R ) )
6 eqidd 2254 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( .r `  R )  =  ( .r `  R ) )
7 eqidd 2254 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  =  ( 0g `  R ) )
81abvrcl 15421 . . 3  |-  ( F  e.  A  ->  R  e.  Ring )
98adantr 453 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  R  e.  Ring )
101, 3abvcl 15424 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  ( F `  x
)  e.  RR )
1110adantlr 698 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  ( F `  x )  e.  RR )
121, 3abvge0 15425 . . . . 5  |-  ( ( F  e.  A  /\  x  e.  B )  ->  0  <_  ( F `  x ) )
1312adantlr 698 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  0  <_  ( F `  x
) )
14 simpr 449 . . . . . . 7  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  ( 0 (,] 1 ) )
15 0xr 8758 . . . . . . . 8  |-  0  e.  RR*
16 1re 8717 . . . . . . . 8  |-  1  e.  RR
17 elioc2 10591 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) ) )
1815, 16, 17mp2an 656 . . . . . . 7  |-  ( S  e.  ( 0 (,] 1 )  <->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
1914, 18sylib 190 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
2019simp1d 972 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  RR )
2120adantr 453 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  S  e.  RR )
2211, 13, 21recxpcld 19938 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  x  e.  B )  ->  (
( F `  x
)  ^ c  S
)  e.  RR )
23 abvcxp.f . . 3  |-  G  =  ( x  e.  B  |->  ( ( F `  x )  ^ c  S ) )
2422, 23fmptd 5536 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G : B --> RR )
25 eqid 2253 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
263, 25rng0cl 15197 . . . . 5  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
279, 26syl 17 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0g `  R )  e.  B
)
28 fveq2 5377 . . . . . 6  |-  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  ( F `  ( 0g `  R ) ) )
2928oveq1d 5725 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( 0g
`  R ) )  ^ c  S ) )
30 ovex 5735 . . . . 5  |-  ( ( F `  ( 0g
`  R ) )  ^ c  S )  e.  _V
3129, 23, 30fvmpt 5454 . . . 4  |-  ( ( 0g `  R )  e.  B  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g `  R ) )  ^ c  S
) )
3227, 31syl 17 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  ( ( F `  ( 0g
`  R ) )  ^ c  S ) )
331, 25abv0 15431 . . . . . 6  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
3433adantr 453 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3534oveq1d 5725 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^ c  S )  =  ( 0  ^ c  S
) )
3620recnd 8741 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  e.  CC )
3719simp2d 973 . . . . . 6  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  0  <  S
)
3837gt0ne0d 9217 . . . . 5  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  S  =/=  0
)
3936, 380cxpd 19925 . . . 4  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( 0  ^ c  S )  =  0 )
4035, 39eqtrd 2285 . . 3  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( ( F `
 ( 0g `  R ) )  ^ c  S )  =  0 )
4132, 40eqtrd 2285 . 2  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  ( G `  ( 0g `  R ) )  =  0 )
42 simp1l 984 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  F  e.  A )
43 simp2 961 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  y  e.  B )
441, 3abvcl 15424 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B )  ->  ( F `  y
)  e.  RR )
4542, 43, 44syl2anc 645 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR )
461, 3, 25abvgt0 15428 . . . . . . 7  |-  ( ( F  e.  A  /\  y  e.  B  /\  y  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  y ) )
47463adant1r 1180 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( F `  y
) )
4845, 47elrpd 10267 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( F `  y )  e.  RR+ )
49203ad2ant1 981 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  S  e.  RR )
5048, 49rpcxpcld 19945 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  (
( F `  y
)  ^ c  S
)  e.  RR+ )
5150rpgt0d 10272 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( ( F `  y )  ^ c  S ) )
52 fveq2 5377 . . . . . 6  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
5352oveq1d 5725 . . . . 5  |-  ( x  =  y  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  y )  ^ c  S ) )
54 ovex 5735 . . . . 5  |-  ( ( F `  y )  ^ c  S )  e.  _V
5553, 23, 54fvmpt 5454 . . . 4  |-  ( y  e.  B  ->  ( G `  y )  =  ( ( F `
 y )  ^ c  S ) )
5643, 55syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  ( G `  y )  =  ( ( F `
 y )  ^ c  S ) )
5751, 56breqtrrd 3946 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  y  e.  B  /\  y  =/=  ( 0g `  R
) )  ->  0  <  ( G `  y
) )
58 simp1l 984 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  F  e.  A
)
59 simp2l 986 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  y  e.  B
)
60 simp3l 988 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  z  e.  B
)
61 eqid 2253 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
621, 3, 61abvmul 15429 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( .r `  R ) z ) )  =  ( ( F `  y )  x.  ( F `  z ) ) )
6358, 59, 60, 62syl3anc 1187 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( .r
`  R ) z ) )  =  ( ( F `  y
)  x.  ( F `
 z ) ) )
6463oveq1d 5725 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S )  =  ( ( ( F `  y )  x.  ( F `  z )
)  ^ c  S
) )
6558, 59, 44syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  y )  e.  RR )
661, 3abvge0 15425 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B )  ->  0  <_  ( F `  y ) )
6758, 59, 66syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  y )
)
681, 3abvcl 15424 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  ( F `  z
)  e.  RR )
6958, 60, 68syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  z )  e.  RR )
701, 3abvge0 15425 . . . . . 6  |-  ( ( F  e.  A  /\  z  e.  B )  ->  0  <_  ( F `  z ) )
7158, 60, 70syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  z )
)
72363ad2ant1 981 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  CC )
7365, 67, 69, 71, 72mulcxpd 19943 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  x.  ( F `  z ) )  ^ c  S )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
7464, 73eqtrd 2285 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
7593ad2ant1 981 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Ring )
763, 61rngcl 15189 . . . . 5  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( .r `  R ) z )  e.  B )
7775, 59, 60, 76syl3anc 1187 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( .r `  R ) z )  e.  B
)
78 fveq2 5377 . . . . . 6  |-  ( x  =  ( y ( .r `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( .r
`  R ) z ) ) )
7978oveq1d 5725 . . . . 5  |-  ( x  =  ( y ( .r `  R ) z )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( y ( .r `  R
) z ) )  ^ c  S ) )
80 ovex 5735 . . . . 5  |-  ( ( F `  ( y ( .r `  R
) z ) )  ^ c  S )  e.  _V
8179, 23, 80fvmpt 5454 . . . 4  |-  ( ( y ( .r `  R ) z )  e.  B  ->  ( G `  ( y
( .r `  R
) z ) )  =  ( ( F `
 ( y ( .r `  R ) z ) )  ^ c  S ) )
8277, 81syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( F `  (
y ( .r `  R ) z ) )  ^ c  S
) )
8359, 55syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  y )  =  ( ( F `  y
)  ^ c  S
) )
84 fveq2 5377 . . . . . . 7  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
8584oveq1d 5725 . . . . . 6  |-  ( x  =  z  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  z )  ^ c  S ) )
86 ovex 5735 . . . . . 6  |-  ( ( F `  z )  ^ c  S )  e.  _V
8785, 23, 86fvmpt 5454 . . . . 5  |-  ( z  e.  B  ->  ( G `  z )  =  ( ( F `
 z )  ^ c  S ) )
8860, 87syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  z )  =  ( ( F `  z
)  ^ c  S
) )
8983, 88oveq12d 5728 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  x.  ( G `  z
) )  =  ( ( ( F `  y )  ^ c  S )  x.  (
( F `  z
)  ^ c  S
) ) )
9074, 82, 893eqtr4d 2295 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( .r
`  R ) z ) )  =  ( ( G `  y
)  x.  ( G `
 z ) ) )
91 rnggrp 15181 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9275, 91syl 17 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  R  e.  Grp )
93 eqid 2253 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
943, 93grpcl 14330 . . . . . . 7  |-  ( ( R  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  R ) z )  e.  B )
9592, 59, 60, 94syl3anc 1187 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( y ( +g  `  R ) z )  e.  B
)
961, 3abvcl 15424 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
( F `  (
y ( +g  `  R
) z ) )  e.  RR )
9758, 95, 96syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  e.  RR )
981, 3abvge0 15425 . . . . . 6  |-  ( ( F  e.  A  /\  ( y ( +g  `  R ) z )  e.  B )  -> 
0  <_  ( F `  ( y ( +g  `  R ) z ) ) )
9958, 95, 98syl2anc 645 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  ( F `  ( y
( +g  `  R ) z ) ) )
100193ad2ant1 981 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( S  e.  RR  /\  0  < 
S  /\  S  <_  1 ) )
101100simp1d 972 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR )
10297, 99, 101recxpcld 19938 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  e.  RR )
10365, 69readdcld 8742 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  +  ( F `  z
) )  e.  RR )
10465, 69, 67, 71addge0d 9228 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <_  (
( F `  y
)  +  ( F `
 z ) ) )
105103, 104, 101recxpcld 19938 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^ c  S )  e.  RR )
10665, 67, 101recxpcld 19938 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 y )  ^ c  S )  e.  RR )
10769, 71, 101recxpcld 19938 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 z )  ^ c  S )  e.  RR )
108106, 107readdcld 8742 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  ^ c  S )  +  ( ( F `
 z )  ^ c  S ) )  e.  RR )
1091, 3, 93abvtri 15430 . . . . . 6  |-  ( ( F  e.  A  /\  y  e.  B  /\  z  e.  B )  ->  ( F `  (
y ( +g  `  R
) z ) )  <_  ( ( F `
 y )  +  ( F `  z
) ) )
11058, 59, 60, 109syl3anc 1187 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( F `  ( y ( +g  `  R ) z ) )  <_  ( ( F `  y )  +  ( F `  z ) ) )
111100simp2d 973 . . . . . . 7  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  0  <  S
)
112101, 111elrpd 10267 . . . . . 6  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  e.  RR+ )
11397, 99, 103, 104, 112cxple2d 19942 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  <_ 
( ( F `  y )  +  ( F `  z ) )  <->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^ c  S
) ) )
114110, 113mpbid 203 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  +  ( F `  z ) )  ^ c  S
) )
115100simp3d 974 . . . . 5  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  S  <_  1
)
11665, 67, 69, 71, 112, 115cxpaddle 19960 . . . 4  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( ( F `  y )  +  ( F `  z ) )  ^ c  S )  <_  (
( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
117102, 105, 108, 114, 116letrd 8853 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( F `
 ( y ( +g  `  R ) z ) )  ^ c  S )  <_  (
( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
118 fveq2 5377 . . . . . 6  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( F `  x )  =  ( F `  ( y ( +g  `  R ) z ) ) )
119118oveq1d 5725 . . . . 5  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
( F `  x
)  ^ c  S
)  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
120 ovex 5735 . . . . 5  |-  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S )  e.  _V
121119, 23, 120fvmpt 5454 . . . 4  |-  ( ( y ( +g  `  R
) z )  e.  B  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
12295, 121syl 17 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  =  ( ( F `  ( y ( +g  `  R
) z ) )  ^ c  S ) )
12383, 88oveq12d 5728 . . 3  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( ( G `
 y )  +  ( G `  z
) )  =  ( ( ( F `  y )  ^ c  S )  +  ( ( F `  z
)  ^ c  S
) ) )
124117, 122, 1233brtr4d 3950 . 2  |-  ( ( ( F  e.  A  /\  S  e.  (
0 (,] 1 ) )  /\  ( y  e.  B  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  B  /\  z  =/=  ( 0g `  R ) ) )  ->  ( G `  ( y ( +g  `  R ) z ) )  <_  ( ( G `  y )  +  ( G `  z ) ) )
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 15420 1  |-  ( ( F  e.  A  /\  S  e.  ( 0 (,] 1 ) )  ->  G  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622   RR*cxr 8746    < clt 8747    <_ cle 8748   (,]cioc 10535   Basecbs 13022   +g cplusg 13082   .rcmulr 13083   0gc0g 13274   Grpcgrp 14197   Ringcrg 15172  AbsValcabv 15416    ^ c ccxp 19745
This theorem is referenced by:  ostth2  20618  ostth  20620
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-mgp 15161  df-ring 15175  df-abv 15417  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747
  Copyright terms: Public domain W3C validator