MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12465
Description: A rule for divisibility by 3 of a number written in base 10. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
StepHypRef Expression
1 3nn 9757 . . . 4  |-  3  e.  NN
21nnzi 9926 . . 3  |-  3  e.  ZZ
32a1i 12 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
4 fzfid 10913 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
5 ffvelrn 5515 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
65adantll 697 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
7 10nn 9764 . . . . . 6  |-  10  e.  NN
87nnzi 9926 . . . . 5  |-  10  e.  ZZ
9 elfznn0 10700 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
109adantl 454 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
11 zexpcl 10996 . . . . 5  |-  ( ( 10  e.  ZZ  /\  k  e.  NN0 )  -> 
( 10 ^ k
)  e.  ZZ )
128, 10, 11sylancr 647 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  ZZ )
136, 12zmulcld 10002 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  ZZ )
144, 13fsumzcl 12085 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ )
154, 6fsumzcl 12085 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1613, 6zsubcld 10001 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
17 ax-1cn 8675 . . . . . . . . . . . 12  |-  1  e.  CC
187nncni 9636 . . . . . . . . . . . 12  |-  10  e.  CC
1917, 18negsubdi2i 9012 . . . . . . . . . . 11  |-  -u (
1  -  10 )  =  ( 10  - 
1 )
20 df-10 9692 . . . . . . . . . . . 12  |-  10  =  ( 9  +  1 )
2120oveq1i 5720 . . . . . . . . . . 11  |-  ( 10 
-  1 )  =  ( ( 9  +  1 )  -  1 )
22 9nn 9763 . . . . . . . . . . . . 13  |-  9  e.  NN
2322nncni 9636 . . . . . . . . . . . 12  |-  9  e.  CC
24 pncan 8937 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  1  e.  CC )  ->  ( ( 9  +  1 )  -  1 )  =  9 )
2523, 17, 24mp2an 656 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2619, 21, 253eqtri 2277 . . . . . . . . . 10  |-  -u (
1  -  10 )  =  9
27 3t3e9 9752 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2826, 27eqtr4i 2276 . . . . . . . . 9  |-  -u (
1  -  10 )  =  ( 3  x.  3 )
2918a1i 12 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  e.  CC )
30 1re 8717 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
31 1lt10 9809 . . . . . . . . . . . . . . . . 17  |-  1  <  10
3230, 31gtneii 8810 . . . . . . . . . . . . . . . 16  |-  10  =/=  1
3332a1i 12 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  10  =/=  1 )
34 id 21 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3529, 33, 34geoser 12199 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  =  ( ( 1  -  ( 10 ^ k ) )  /  ( 1  -  10 ) ) )
36 fzfid 10913 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
37 elfznn0 10700 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
3837adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
39 zexpcl 10996 . . . . . . . . . . . . . . . 16  |-  ( ( 10  e.  ZZ  /\  j  e.  NN0 )  -> 
( 10 ^ j
)  e.  ZZ )
408, 38, 39sylancr 647 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  ( 10 ^
j )  e.  ZZ )
4136, 40fsumzcl 12085 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) ( 10 ^
j )  e.  ZZ )
4235, 41eqeltrrd 2328 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ )
43 1z 9932 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
44 zsubcl 9940 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  ZZ  /\  10  e.  ZZ )  -> 
( 1  -  10 )  e.  ZZ )
4543, 8, 44mp2an 656 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  e.  ZZ
4645a1i 12 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  e.  ZZ )
4730, 31ltneii 8811 . . . . . . . . . . . . . . . 16  |-  1  =/=  10
4817, 18subeq0i 9006 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  -  10 )  =  0  <->  1  =  10 )
4948necon3bii 2444 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  10 )  =/=  0  <->  1  =/=  10 )
5047, 49mpbir 202 . . . . . . . . . . . . . . 15  |-  ( 1  -  10 )  =/=  0
5150a1i 12 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  10 )  =/=  0 )
528, 34, 11sylancr 647 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  ZZ )
53 zsubcl 9940 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  ( 10 ^ k )  e.  ZZ )  -> 
( 1  -  ( 10 ^ k ) )  e.  ZZ )
5443, 52, 53sylancr 647 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  ( 10 ^
k ) )  e.  ZZ )
55 divides2 12408 . . . . . . . . . . . . . 14  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
1  -  10 )  =/=  0  /\  (
1  -  ( 10
^ k ) )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
1  -  ( 10
^ k ) )  <-> 
( ( 1  -  ( 10 ^ k
) )  /  (
1  -  10 ) )  e.  ZZ ) )
5646, 51, 54, 55syl3anc 1187 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( 1  -  ( 10 ^ k
) )  <->  ( (
1  -  ( 10
^ k ) )  /  ( 1  -  10 ) )  e.  ZZ ) )
5742, 56mpbird 225 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( 1  -  ( 10 ^ k ) ) )
5852zcnd 9997 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 10
^ k )  e.  CC )
59 negsubdi2 8986 . . . . . . . . . . . . 13  |-  ( ( ( 10 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 10
^ k )  - 
1 )  =  ( 1  -  ( 10
^ k ) ) )
6058, 17, 59sylancl 646 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
( 10 ^ k
)  -  1 )  =  ( 1  -  ( 10 ^ k
) ) )
6157, 60breqtrrd 3946 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) )
62 peano2zm 9941 . . . . . . . . . . . . 13  |-  ( ( 10 ^ k )  e.  ZZ  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
6352, 62syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 10 ^ k )  -  1 )  e.  ZZ )
64 dvdsnegb 12420 . . . . . . . . . . . 12  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <-> 
( 1  -  10 )  ||  -u ( ( 10
^ k )  - 
1 ) ) )
6545, 63, 64sylancr 647 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  ( 1  -  10 )  ||  -u ( ( 10 ^
k )  -  1 ) ) )
6661, 65mpbird 225 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) )
67 negdvdsb 12419 . . . . . . . . . . 11  |-  ( ( ( 1  -  10 )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 1  -  10 )  ||  (
( 10 ^ k
)  -  1 )  <->  -u ( 1  -  10 )  ||  ( ( 10
^ k )  - 
1 ) ) )
6845, 63, 67sylancr 647 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  -  10 ) 
||  ( ( 10
^ k )  - 
1 )  <->  -u ( 1  -  10 )  ||  ( ( 10 ^
k )  -  1 ) ) )
6966, 68mpbid 203 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  -  10 ) 
||  ( ( 10
^ k )  - 
1 ) )
7028, 69syl5eqbrr 3954 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( ( 10 ^
k )  -  1 ) )
712a1i 12 . . . . . . . . 9  |-  ( k  e.  NN0  ->  3  e.  ZZ )
72 muldvds1 12427 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( 10 ^ k
)  -  1 ) ) )
7371, 71, 63, 72syl3anc 1187 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( ( 10
^ k )  - 
1 )  ->  3  ||  ( ( 10 ^
k )  -  1 ) ) )
7470, 73mpd 16 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
7510, 74syl 17 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( 10 ^
k )  -  1 ) )
762a1i 12 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  e.  ZZ )
7712, 62syl 17 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( 10 ^ k
)  -  1 )  e.  ZZ )
78 dvdsmultr2 12438 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
( 10 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
( 10 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) ) ) )
7976, 6, 77, 78syl3anc 1187 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( ( 10 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) ) )
8075, 79mpd 16 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
( 10 ^ k
)  -  1 ) ) )
816zcnd 9997 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8212zcnd 9997 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( 10 ^ k )  e.  CC )
8317a1i 12 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  1  e.  CC )
8481, 82, 83subdid 9115 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( ( F `  k )  x.  1 ) ) )
8581mulid1d 8732 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  1 )  =  ( F `  k ) )
8685oveq2d 5726 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  ( 10 ^ k ) )  -  ( ( F `
 k )  x.  1 ) )  =  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
8784, 86eqtrd 2285 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( ( 10 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
8880, 87breqtrd 3944 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
) )
894, 3, 16, 88fsumdvds 12446 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  ( 10 ^
k ) )  -  ( F `  k ) ) )
9013zcnd 9997 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( 10
^ k ) )  e.  CC )
914, 90, 81fsumsub 12127 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  ( 10 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
9289, 91breqtrd 3944 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k
) ) )
93 dvdssub2 12440 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  ( 10 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  ( 10 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
943, 14, 15, 92, 93syl31anc 1190 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  ( 10
^ k ) )  <->  3  ||  sum_ k  e.  ( 0 ... N
) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    - cmin 8917   -ucneg 8918    / cdiv 9303   3c3 9676   9c9 9682   10c10 9683   NN0cn0 9844   ZZcz 9903   ...cfz 10660   ^cexp 10982   sum_csu 12035    || cdivides 12405
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-divides 12406
  Copyright terms: Public domain W3C validator