MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36v Unicode version

Theorem 19.36v 2029
Description: Special case of Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.36v  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.36v
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ps
2119.36 1788 1  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532   E.wex 1537
This theorem is referenced by:  19.12vv  2031  axext2  2235  vtocl2  2777  vtocl3  2778  19.36vv  26747  bnj1090  27698
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator