MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36aiv Unicode version

Theorem 19.36aiv 2030
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.36aiv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ps
2 19.36aiv.1 . 2  |-  E. x
( ph  ->  ps )
31, 219.36i 1789 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1532   E.wex 1537
This theorem is referenced by:  vtocl2  2777  vtocl3  2778  zfcndext  8115
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator