Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dif Unicode version

Theorem 0dif 3431
 Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif

Proof of Theorem 0dif
StepHypRef Expression
1 difss 3220 . 2
2 ss0 3392 . 2
31, 2ax-mp 10 1
 Colors of variables: wff set class Syntax hints:   wceq 1619   cdif 3075   wss 3078  c0 3362 This theorem is referenced by:  fresaun  5269  dffv2  5444  ablfac1eulem  15142  itgioo  19002  symdif0  23543  sssu  24307  bwt2  24758 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-dif 3081  df-in 3085  df-ss 3089  df-nul 3363
 Copyright terms: Public domain W3C validator