Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zrei | GIF version |
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
zre.1 | ⊢ 𝐴 ∈ ℤ |
Ref | Expression |
---|---|
zrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
2 | zre 8249 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ℝcr 6888 ℤcz 8245 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-rab 2315 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-neg 7185 df-z 8246 |
This theorem is referenced by: dfuzi 8348 eluzaddi 8499 eluzsubi 8500 |
Copyright terms: Public domain | W3C validator |