Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfausab Structured version   GIF version

Theorem zfausab 3890
 Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
zfausab.1 A V
Assertion
Ref Expression
zfausab {x ∣ (x A φ)} V
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem zfausab
StepHypRef Expression
1 zfausab.1 . 2 A V
2 ssab2 3018 . 2 {x ∣ (x A φ)} ⊆ A
31, 2ssexi 3886 1 {x ∣ (x A φ)} V
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ∈ wcel 1390  {cab 2023  Vcvv 2551 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-ss 2925 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator