Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl GIF version

 Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 8247 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
21simprbi 260 . . 3 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
32adantl 262 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
4 zcn 8250 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
54adantr 261 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
65addid1d 7162 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
7 simpl 102 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
86, 7eqeltrd 2114 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) ∈ ℤ)
9 oveq2 5520 . . . . 5 (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0))
109eleq1d 2106 . . . 4 (𝑁 = 0 → ((𝑀 + 𝑁) ∈ ℤ ↔ (𝑀 + 0) ∈ ℤ))
118, 10syl5ibrcom 146 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑀 + 𝑁) ∈ ℤ))
12 zaddcllempos 8282 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
1312ex 108 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1413adantr 261 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
15 zre 8249 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
16 zaddcllemneg 8284 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
17163expia 1106 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1815, 17sylan2 270 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑁 ∈ ℕ → (𝑀 + 𝑁) ∈ ℤ))
1911, 14, 183jaod 1199 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ))
203, 19mpd 13 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)