![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrex | GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 6861 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 6813 | . . 3 ⊢ ℝ ∈ V | |
3 | pnfxr 8462 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | mnfxr 8464 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | prexg 3938 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
6 | 3, 4, 5 | mp2an 402 | . . 3 ⊢ {+∞, -∞} ∈ V |
7 | 2, 6 | unex 4142 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
8 | 1, 7 | eqeltri 2107 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1390 Vcvv 2551 ∪ cun 2909 {cpr 3368 ℝcr 6710 +∞cpnf 6854 -∞cmnf 6855 ℝ*cxr 6856 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-cnex 6774 ax-resscn 6775 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-uni 3572 df-pnf 6859 df-mnf 6860 df-xr 6861 |
This theorem is referenced by: ixxval 8535 ixxf 8537 ixxex 8538 |
Copyright terms: Public domain | W3C validator |