![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpexr2m | GIF version |
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpexr2m | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpm 4745 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
2 | dmxpm 4555 | . . . . . 6 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 262 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 4596 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 261 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2115 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → 𝐴 ∈ V) |
7 | rnxpm 4752 | . . . . . 6 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 262 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 4597 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 261 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2115 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 532 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 500 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 272 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 × cxp 4343 dom cdm 4345 ran crn 4346 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |