ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexgALT GIF version

Theorem xpexgALT 5760
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4452 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)

Proof of Theorem xpexgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 3712 . . . 4 𝑦𝐵 {𝑦} = 𝐵
21xpeq2i 4366 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = (𝐴 × 𝐵)
3 xpiundi 4398 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = 𝑦𝐵 (𝐴 × {𝑦})
42, 3eqtr3i 2062 . 2 (𝐴 × 𝐵) = 𝑦𝐵 (𝐴 × {𝑦})
5 id 19 . . 3 (𝐵𝑊𝐵𝑊)
6 fconstmpt 4387 . . . . 5 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
7 mptexg 5386 . . . . 5 (𝐴𝑉 → (𝑥𝐴𝑦) ∈ V)
86, 7syl5eqel 2124 . . . 4 (𝐴𝑉 → (𝐴 × {𝑦}) ∈ V)
98ralrimivw 2393 . . 3 (𝐴𝑉 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 iunexg 5746 . . 3 ((𝐵𝑊 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
115, 9, 10syl2anr 274 . 2 ((𝐴𝑉𝐵𝑊) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
124, 11syl5eqel 2124 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  wral 2306  Vcvv 2557  {csn 3375   ciun 3657  cmpt 3818   × cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator