ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd Structured version   GIF version

Theorem xp2nd 5735
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd (A (B × 𝐶) → (2ndA) 𝐶)

Proof of Theorem xp2nd
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4305 . 2 (A (B × 𝐶) ↔ 𝑏𝑐(A = ⟨𝑏, 𝑐 (𝑏 B 𝑐 𝐶)))
2 vex 2554 . . . . . . 7 𝑏 V
3 vex 2554 . . . . . . 7 𝑐 V
42, 3op2ndd 5718 . . . . . 6 (A = ⟨𝑏, 𝑐⟩ → (2ndA) = 𝑐)
54eleq1d 2103 . . . . 5 (A = ⟨𝑏, 𝑐⟩ → ((2ndA) 𝐶𝑐 𝐶))
65biimpar 281 . . . 4 ((A = ⟨𝑏, 𝑐 𝑐 𝐶) → (2ndA) 𝐶)
76adantrl 447 . . 3 ((A = ⟨𝑏, 𝑐 (𝑏 B 𝑐 𝐶)) → (2ndA) 𝐶)
87exlimivv 1773 . 2 (𝑏𝑐(A = ⟨𝑏, 𝑐 (𝑏 B 𝑐 𝐶)) → (2ndA) 𝐶)
91, 8sylbi 114 1 (A (B × 𝐶) → (2ndA) 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  wex 1378   wcel 1390  cop 3370   × cxp 4286  cfv 4845  2nd c2nd 5708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-iota 4810  df-fun 4847  df-fv 4853  df-2nd 5710
This theorem is referenced by:  dfplpq2  6338  dfmpq2  6339  enqbreq2  6341  enqdc1  6346  mulpipq2  6355  preqlu  6455  elnp1st2nd  6459  cauappcvgprlemladd  6630  elreal2  6728  cnref1o  8357  frecuzrdgrrn  8875  frec2uzrdg  8876  frecuzrdgfn  8879  frecuzrdgcl  8880  frecuzrdgsuc  8882
  Copyright terms: Public domain W3C validator