ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd GIF version

Theorem xp2nd 5793
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)

Proof of Theorem xp2nd
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4362 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2560 . . . . . . 7 𝑏 ∈ V
3 vex 2560 . . . . . . 7 𝑐 ∈ V
42, 3op2ndd 5776 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (2nd𝐴) = 𝑐)
54eleq1d 2106 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((2nd𝐴) ∈ 𝐶𝑐𝐶))
65biimpar 281 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑐𝐶) → (2nd𝐴) ∈ 𝐶)
76adantrl 447 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
87exlimivv 1776 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
91, 8sylbi 114 1 (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wex 1381  wcel 1393  cop 3378   × cxp 4343  cfv 4902  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-2nd 5768
This theorem is referenced by:  dfplpq2  6452  dfmpq2  6453  enqbreq2  6455  enqdc1  6460  mulpipq2  6469  preqlu  6570  elnp1st2nd  6574  cauappcvgprlemladd  6756  elreal2  6907  cnref1o  8582  frecuzrdgrrn  9194  frec2uzrdg  9195  frecuzrdgfn  9198  frecuzrdgcl  9199  frecuzrdgsuc  9201
  Copyright terms: Public domain W3C validator