ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disj GIF version

Theorem xp01disj 6017
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj ((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 6016 . . 3 1𝑜 ≠ ∅
21necomi 2290 . 2 ∅ ≠ 1𝑜
3 xpsndisj 4749 . 2 (∅ ≠ 1𝑜 → ((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅)
42, 3ax-mp 7 1 ((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wne 2204  cin 2916  c0 3224  {csn 3375   × cxp 4343  1𝑜c1o 5994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-1o 6001
This theorem is referenced by:  endisj  6298
  Copyright terms: Public domain W3C validator