Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xoror | GIF version |
Description: XOR implies OR. (Contributed by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
xoror | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xoranor 1268 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜓))) | |
2 | 1 | simplbi 259 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 629 ⊻ wxo 1266 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-xor 1267 |
This theorem is referenced by: mtpxor 1317 |
Copyright terms: Public domain | W3C validator |