Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xordc1 GIF version

Theorem xordc1 1284
 Description: Exclusive or implies the left proposition is decidable. (Contributed by Jim Kingdon, 12-Mar-2018.)
Assertion
Ref Expression
xordc1 ((𝜑𝜓) → DECID 𝜑)

Proof of Theorem xordc1
StepHypRef Expression
1 andir 732 . . 3 (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ ((𝜑 ∧ ¬ (𝜑𝜓)) ∨ (𝜓 ∧ ¬ (𝜑𝜓))))
2 simpl 102 . . . 4 ((𝜑 ∧ ¬ (𝜑𝜓)) → 𝜑)
3 imnan 624 . . . . . 6 ((𝜓 → ¬ 𝜑) ↔ ¬ (𝜓𝜑))
4 ancom 253 . . . . . 6 ((𝜑𝜓) ↔ (𝜓𝜑))
53, 4xchbinxr 608 . . . . 5 ((𝜓 → ¬ 𝜑) ↔ ¬ (𝜑𝜓))
6 pm3.35 329 . . . . 5 ((𝜓 ∧ (𝜓 → ¬ 𝜑)) → ¬ 𝜑)
75, 6sylan2br 272 . . . 4 ((𝜓 ∧ ¬ (𝜑𝜓)) → ¬ 𝜑)
82, 7orim12i 676 . . 3 (((𝜑 ∧ ¬ (𝜑𝜓)) ∨ (𝜓 ∧ ¬ (𝜑𝜓))) → (𝜑 ∨ ¬ 𝜑))
91, 8sylbi 114 . 2 (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) → (𝜑 ∨ ¬ 𝜑))
10 df-xor 1267 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
11 df-dc 743 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
129, 10, 113imtr4i 190 1 ((𝜑𝜓) → DECID 𝜑)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∨ wo 629  DECID wdc 742   ⊻ wxo 1266 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743  df-xor 1267 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator